Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла равны 120o. Доказать, что найдутся две его стороны, имеющие одинаковую длину.

Вниз   Решение


Если число     – целое, то и число     – целое. Доказать.

ВверхВниз   Решение


Сколько цифр имеет число 2100?

ВверхВниз   Решение


На стороне AB треугольника ABC отмечена точка K так, что  AB = CK.  Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что  KN = KP.

ВверхВниз   Решение


Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.

ВверхВниз   Решение


Во вписанном четырёхугольнике ABCD известны углы:  ∠DAB = α,  ∠ABC = β,  ∠BKC = γ,  где K – точка пересечения диагоналей. Найдите угол ACD.

ВверхВниз   Решение


В трапецию ABCD вписана окружность. Продолжения боковых сторон трапеции AD и BC за точки D и C пересекаются в точке E. Периметр треугольника DCE и основание трапеции AB равны соответственно 60 и 20, угол ADC равен $ \beta$. Найдите радиус окружности.

ВверхВниз   Решение


Равнобедренная трапеция с основаниями AD и BC ( AD > BC ) описана около окружности, которая касается стороны CD в точке M . Отрезок AM пересекает окружность в точке N . Найдите отношение AD к BC , если AN:NM = k .

ВверхВниз   Решение


Биссектрисы углов A и C трапеции ABCD пересекаются в точке P, а биссектрисы углов B и D – в точке Q, отличной от P.
Докажите, что если отрезок PQ параллелен основанию AD, то трапеция равнобокая.

ВверхВниз   Решение


Внутри прямоугольного треугольника ABC (угол B — прямой) взята точка D, причём площади треугольников ABD и BCD соответственно в три и в четыре раза меньше площади треугольника ABC. отрезки AD и DC равны соответственно a и c. Найдите BD.

ВверхВниз   Решение


Дана полуокружность с диаметром AB. С помощью циркуля и линейки постройте хорду MN, параллельную AB, так, чтобы трапеция AMNB была описанной.

ВверхВниз   Решение


Докажите, что числа    а)  232001 + 1;     б)  232001 – 1   – составные.

ВверхВниз   Решение


Два корабля двигаются с постоянными скоростями. Расстояния между ними, измеренные в 12, 14 и 15 часов, равнялись
5, 7 и 2 километра соответственно. Каким было расстояние между кораблями в 13 часов?

ВверхВниз   Решение


Докажите, что если в выпуклом пятиугольнике ABCDE  ABC = ∠ADE  и ∠AEC = ∠ADB,  то  ∠BAC = ∠DAE.

ВверхВниз   Решение


Найдите наименьшее значение выражения а4а2 – 2а.

ВверхВниз   Решение


Диагонали AC и BD вписанного в окружность четырёхугольника ABCD взаимно перпендикулярны и пересекаются в точке M. Известно, что  AM = 3,  BM = 4  и  CM = 6.  Найдите CD.

Вверх   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 542]      



Задача 54244

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Диагонали ромба равны 24 и 70. Найдите сторону ромба.

Прислать комментарий     Решение

Задача 54245

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Найдите диагонали ромба, если они относятся как  3 : 4,  а периметр равен 1.

Прислать комментарий     Решение

Задача 54246

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 2+
Классы: 8,9

Основания равнобедренной трапеции равны 10 и 24, боковая сторона равна 25. Найдите высоту трапеции.

Прислать комментарий     Решение

Задача 54685

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 2+
Классы: 8,9

Диагонали AC и BD вписанного в окружность четырёхугольника ABCD взаимно перпендикулярны и пересекаются в точке M. Известно, что  AM = 3,  BM = 4  и  CM = 6.  Найдите CD.

Прислать комментарий     Решение

Задача 102860

Темы:   [ Наглядная геометрия ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 6,7,8

Можно ли в прямоугольник 5×6 поместить прямоугольник 3×8?

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 542]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .