Страница:
<< 158 159 160 161
162 163 164 >> [Всего задач: 1275]
|
|
Сложность: 3+ Классы: 9,10,11
|
В четырёхугольнике ABCD AB = ВС = m, ∠АВС = ∠АDС = 120°. Найдите BD.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой.
Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины
этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок
перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет
постоянную длину.
На окружности выбрано пять точек A1, A2, A3, A4, H. Обозначим через hij расстояние от точки H до прямой AiAj. Доказать, что
h12h34 = h14h23.
Страница:
<< 158 159 160 161
162 163 164 >> [Всего задач: 1275]