Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

Вниз   Решение


M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.

ВверхВниз   Решение


Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

ВверхВниз   Решение


В алфавите племени Мумбу-Юмбу есть лишь две буквы A и Б. Два разных слова обозначают одно и то же понятие, если одно из них может быть получено из другого с помощью следующих операций:
  1) в любом месте слова комбинацию букв АБА можно заменить на БАБ;
  2) из любого места можно выкидывать две одинаковые буквы, идущие подряд.
  а) Может ли дикарь племени сосчитать все пальцы на своей руке?
  б) А дни недели?

ВверхВниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

ВверхВниз   Решение


m и n – натуральные числа,  m < n.  Докажите, что  

ВверхВниз   Решение


Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.

ВверхВниз   Решение


Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

ВверхВниз   Решение


В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.

ВверхВниз   Решение


Точки A, B, C, D лежат на одной прямой. Докажите, что если (ABCD) = 1, то либо A = B, либо C = D.

ВверхВниз   Решение


Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

ВверхВниз   Решение


Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.

ВверхВниз   Решение


Точка M – середина стороны CD параллелограмма ABCD, точка H – проекция вершины B на прямую AM.
Докажите, что треугольник CBH равнобедренный.

ВверхВниз   Решение


Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

ВверхВниз   Решение


Сторона BC четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите сторону AB, если BC = 8, BD = 4$ \sqrt{2}$, $ \angle$DCA : $ \angle$ACB = 2 : 1.

ВверхВниз   Решение


При помощи задачи 60752 докажите, что существует бесконечно много простых чисел вида  p = 4k + 1.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что существует бесконечно много простых чисел.

ВверхВниз   Решение


Докажите, что  pn+1 ≤ 22n + 1,  где pnn-е простое число.

ВверхВниз   Решение


Около трапеции ABCD описана окружность, центр которой лежит на основании AD. Найдите площадь трапеции, если AB = $ {\frac{3}{4}}$, AC = 1.

ВверхВниз   Решение


В трапеции ABCD большее основание  AD = 19,  боковая сторона  AB = 13,  а другая боковая сторона  CD = 12  и перпендикулярна основаниям. Биссектриса острого угла BAD пересекает прямую DC в точке M. Определите, где лежит точка M: на отрезке DC или вне его?

ВверхВниз   Решение


Из цифр 1 и 2 составили пять n-значных чисел так, что у каждых двух чисел совпали цифры ровно в m разрядах, но ни в одном разряде не совпали все пять чисел. Докажите, что отношение m/n не меньше ⅖ и не больше ⅗.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 171]      



Задача 73582

Темы:   [ Сочетания и размещения ]
[ Десятичная система счисления ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9,10

Из цифр 1 и 2 составили пять n-значных чисел так, что у каждых двух чисел совпали цифры ровно в m разрядах, но ни в одном разряде не совпали все пять чисел. Докажите, что отношение m/n не меньше ⅖ и не больше ⅗.

Прислать комментарий     Решение

Задача 67057

Темы:   [ Сочетания и размещения ]
[ Примеры и контрпримеры. Конструкции ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

На плоскости сидят кузнечик Коля и 2020 его товарищей. Коля собирается совершить прыжок через каждого из остальных кузнечиков (в произвольном порядке) так, что начальная и конечная точка каждого прыжка симметричны относительно перепрыгиваемого кузнечика. Назовём точку финишной, если Коля может в неё попасть после 2020-го прыжка. При каком наибольшем числе $N$ найдётся начальная расстановка кузнечиков, для которой имеется ровно $N$ различных возможных финишных точек?

Прислать комментарий     Решение

Задача 98014

Темы:   [ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин С.В.

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?

 
Прислать комментарий     Решение

Задача 116428

Темы:   [ Сочетания и размещения ]
[ Доказательство от противного ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4
Классы: 8,9

На плоскости дана незамкнутая несамопересекающаяся ломаная, в которой 31 звено (соседние звенья не лежат на одной прямой). Через каждое звено провели прямую, содержащую это звено. Получили 31 прямую, некоторые, возможно, совпали. Какое наименьшее число различных прямых могло получиться?

Прислать комментарий     Решение

Задача 115502

Темы:   [ Сочетания и размещения ]
[ Доказательство от противного ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4+
Классы: 7,8,9,10

Дана незамкнутая несамопересекающаяся ломаная из 37 звеньев. Через каждое звено провели прямую.
Какое наименьшее число различных прямых могло получиться?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .