Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

Вниз   Решение


Известно, что в тетраэдре две пары скрещивающихся ребер перепндикулярны. Докажите, что и третья пара скрещивающихся ребер обладает этим свойством.

ВверхВниз   Решение


Основанием пирамиды служит треугольник со сторонами 9, 12 и 15, а её высота образует с высотами боковых граней (опущенных из той же вершины) одинаковые углы, не меньшие 60o . Какой наибольший объём может иметь такая пирамида?

ВверхВниз   Решение


Доска имеет форму креста, который получается, если из квадратной доски 4×4 выкинуть угловые клетки.
Можно ли обойти её ходом шахматного коня и вернуться на исходное поле, побывав на всех полях ровно по разу?

ВверхВниз   Решение


Стороны синего и зеленого правильных треугольников соответственно параллельны. Периметр синего треугольника равен 4, а периметр зеленого треугольника равен 5. Найдите периметр шестиугольника, полученного в пересечении этих треугольников.

ВверхВниз   Решение


Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.

ВверхВниз   Решение


Чемпионат России по шахматам проводится в один круг. Сколько играется партий, если участвуют 18 шахматистов?

ВверхВниз   Решение


Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

ВверхВниз   Решение


Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

ВверхВниз   Решение


Докажите, что любое простое число, большее 3, можно записать в одном из двух видов:  6n + 1  либо  6n – 1,  где n – натуральное число.

ВверхВниз   Решение


Рота состоит из трёх офицеров, шести сержантов и 60 рядовых. Сколькими способами можно выделить из них отряд, состоящий из офицера, двух сержантов и 20 рядовых?

ВверхВниз   Решение


Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

ВверхВниз   Решение


Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30o . Найдите радиусы сфер.

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 257]      



Задача 73537

Темы:   [ Окружности на сфере ]
[ Касающиеся окружности ]
[ Правильная пирамида ]
[ Многогранные углы ]
[ Неравенства с трехгранными углами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 7
Классы: 10,11

Дана сфера радиуса 1. На ней расположены равные окружности γ0, γ1, ..., γn радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ1, ..., γn; кроме того, касаются друг друга окружности γ1 и γ2, γ2 и γ3, ..., γn и γ1. При каких n это возможно? Вычислите соответствующий радиус r.
Прислать комментарий     Решение


Задача 116514

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Касающиеся сферы ]
[ Неопределено ]
Сложность: 2+
Классы: 10,11

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер.

Прислать комментарий     Решение

Задача 78779

Темы:   [ Пространственные многоугольники ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 11

Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.
Прислать комментарий     Решение


Задача 87131

Темы:   [ Касающиеся сферы ]
[ Касательные к сферам ]
Сложность: 3
Классы: 10,11

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30o . Найдите радиусы сфер.
Прислать комментарий     Решение


Задача 87151

Темы:   [ Конус ]
[ Касающиеся сферы ]
Сложность: 3
Классы: 8,9

Угол при вершине осевого сечения конуса равен 60o . Внутри конуса расположены три сферы радиуса 1. Каждая сфера касается двух других, основания конуса и его боковой поверхности. Найдите радиус основания конуса.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .