|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В квадрате со стороной 15 расположено 20 попарно непересекающихся квадратиков со стороной 1. Докажите, что в большом квадрате можно разместить круг радиуса 1 так, чтобы он не пересекался ни с одним из квадратиков. В пирамиде ABCD даны рёбра: AB = 7 , BC = 8 , CD = 4 . Найдите ребро DA , если известно, что прямые AC и BD перпендикулярны. Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?
Докажите, что у выпуклого 10n-гранника найдётся n граней с одинаковым числом сторон. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 80]
Докажите, что у выпуклого 10n-гранника найдётся n граней с одинаковым числом сторон.
Внутри выпуклого многогранника выбрана точка P и несколько прямых l1, ..., ln, проходящих через P и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых l1, ..., ln, которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 80] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|