ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Найдите геометрическое место центров тяжести треугольников, вершины которых лежат на сторонах данного треугольника (по одной вершине внутри каждой стороны).

б) Найдите геометрическое место центров тяжести тетраэдров, вершины которых лежат на гранях данного тетраэдра (по одной вершине внутри каждой грани).

   Решение

Задачи

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 1984]      



Задача 78294

Темы:   [ Делимость чисел. Общие свойства ]
[ Комбинаторика орбит ]
[ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10

В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол  α ≠ 2π   совмещается сам с собой. Доказать, что n – число составное.

Прислать комментарий     Решение

Задача 78474

Темы:   [ Уравнения в целых числах ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение   xy/z + xz/y + yz/x = 3.

Прислать комментарий     Решение

Задача 78481

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 10,11

Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать.
Прислать комментарий     Решение


Задача 78508

Темы:   [ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.
Прислать комментарий     Решение


Задача 78518

Тема:   [ Шестиугольники ]
Сложность: 3+
Классы: 8,9

В шестиугольнике ABCDEF все углы равны. Доказать, что длины сторон такого шестиугольника удовлетворяют соотношениям: a1 - a4 = a5 - a2 = a3 - a6.
Прислать комментарий     Решение


Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 1984]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .