ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В неравнобедренном треугольнике ABC проведены медианы AK и BL . Углы BAK и CBL равны 30o . Найдите углы треугольника ABC . Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что AM = AN = AB (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник. Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя Пусть P(x) = anxn + ... + a1x + a0 – многочлен с целыми коэффициентами. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]
Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность $n - p$ также является простым числом.
Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира: 2021:43 = 47. Сколько ещё раз человечество сможет наблюдать это удивительное явление?
Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
Натуральное число $k$ назовём интересным, если произведение первых $k$ простых чисел делится на $k$ (например, произведение первых двух простых чисел – это 2·3 = 6, и 2 – число интересное).
Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке