ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

   Решение

Задачи

Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 1957]      



Задача 115514

Темы:   [ Вспомогательные подобные треугольники ]
[ Две пары подобных треугольников ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Внутри выпуклого четырёхугольника ABCD взята такая точка P, что  ∠PBA = ∠PCD = 90°.  Точка M – середина стороны AD, причём  BM = CM.
Докажите, что  ∠PAB = ∠PDC.

Прислать комментарий     Решение

Задача 116209

Темы:   [ Делимость чисел. Общие свойства ]
[ Текстовые задачи (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?

Прислать комментарий     Решение

Задача 116210

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шестиугольники ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?

Прислать комментарий     Решение

Задача 116212

Темы:   [ Средняя линия треугольника ]
[ Средняя линия треугольника ]
[ Конкуррентность высот. Углы между высотами. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

Прислать комментарий     Решение

Задача 116218

Темы:   [ Две пары подобных треугольников ]
[ Вписанный угол равен половине центрального ]
[ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9,10

В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что  ∠PKA = ∠QKD.

Прислать комментарий     Решение

Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .