ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Про положительные числа a, b, c, d, e известно, что a² + b² + c² + d² + e² = ab + ac + ad + ae + bc + bd + be + cd + ce + de. |
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 1957]
Про положительные числа a, b, c, d, e известно, что a² + b² + c² + d² + e² = ab + ac + ad + ae + bc + bd + be + cd + ce + de.
На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?
На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что AP = BP + CP.
Даны две непересекающиеся окружности, к которым проведены две общие внешние касательные. Рассмотрим равнобедренный треугольник, основание которого лежит на одной касательной, противоположная вершина – на другой, а каждая из боковых сторон касается одной из данных окружностей. Докажите, что высота треугольника равна сумме радиусов окружностей.
На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 1957] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|