Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Может ли быть верным равенство

К х О х Т = У х Ч х Ё х Н х Ы х Й
если в него вместо букв подставить цифры от 1 до 9? Разным буквам соответствуют разные цифры.

Вниз   Решение


Докажите, что прямые AB и KM перпендикулярны тогда и только тогда, когда  AK² – BK² = AM² – BM².

ВверхВниз   Решение


Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?

ВверхВниз   Решение


Последовательность (an) такова, что  an = n²  при  1 ≤ n ≤ 5  и при всех натуральных n выполнено равенство  an+5 + an+1 = an+4 + an.  Найдите a2015.

Вверх   Решение

Задачи

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 1982]      



Задача 64710

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Три прямые, пересекающиеся в одной точке ]
[ Конкуррентность высот. Углы между высотами. ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.

Прислать комментарий     Решение

Задача 64720

Темы:   [ Арифметическая прогрессия ]
[ Тригонометрический круг ]
[ Тригонометрические уравнения ]
Сложность: 3+
Классы: 10,11

Найдите все значения a, для которых найдутся такие x, y и z, что числа cos x, cos y и cos z попарно различны и образуют в указанном порядке арифметическую прогрессию, при этом числа  cos(x + a),  cos(y + a)  и  cos(z + a)  также образуют в указанном порядке арифметическую прогрессию.

Прислать комментарий     Решение

Задача 64721

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 9,10,11

Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что  ∠ABM = ∠MQP.

Прислать комментарий     Решение

Задача 65188

Темы:   [ Десятичная система счисления ]
[ Задачи на проценты и отношения ]
[ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9

Миша заметил, что на электронном табло, показывающем курс доллара к рублю (4 цифры, разделенные десятичной запятой), горят те же самые четыре различные цифры, что и месяц назад, но в другом порядке. При этом курс вырос ровно на 20%. Приведите пример того, как такое могло произойти.

Прислать комментарий     Решение

Задача 65189

Темы:   [ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Креков Д.

Будем называть натуральное число почти квадратом, если это либо точный квадрат, либо точный квадрат, умноженный на простое число.
Могут ли 8 почти квадратов идти подряд?

Прислать комментарий     Решение

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .