ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Определите вид четырёхугольника, вершинами которого служат середины сторон данного: 1) произвольного четырёхугольника; 2) параллелограмма; 3) прямоугольника, 4) ромба; 5) квадрата; 6) трапеции.
Дана некоторая тройка чисел. С любыми двумя из них разрешается проделывать следующее: если эти числа равны a и b, то их можно заменить на Через точки M и N, делящие сторону AB треугольника ABC на три равные части, проведены прямые, параллельные стороне AC.
В прошлом году Миша купил смартфон, который стоил целое четырёхзначное число рублей. Зайдя в магазин в этом году, он заметил, что цена смартфона выросла на 20% и при этом состоит из тех же цифр, но в обратном порядке. Какую сумму Миша потратил на смартфон? |
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 1982]
В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.
Найдите все значения a, для которых найдутся такие x, y и z, что числа cos x, cos y и cos z попарно различны и образуют в указанном порядке арифметическую прогрессию, при этом числа cos(x + a), cos(y + a) и cos(z + a) также образуют в указанном порядке арифметическую прогрессию.
Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что ∠ABM = ∠MQP.
Миша заметил, что на электронном табло, показывающем курс доллара к рублю (4 цифры, разделенные десятичной запятой), горят те же самые четыре различные цифры, что и месяц назад, но в другом порядке. При этом курс вырос ровно на 20%. Приведите пример того, как такое могло произойти.
Будем называть натуральное число почти квадратом, если это либо точный квадрат, либо точный квадрат, умноженный на простое число.
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 1982]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке