|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Точка O – центр описанной окружности Ω остроугольного треугольника ABC. Описанная окружность ω треугольника AOC вторично пересекает стороны AB и BC в точках E и F. Оказалось, что прямая EF делит площадь треугольника ABC пополам. Найдите угол B. |
Страница: << 199 200 201 202 203 204 205 >> [Всего задач: 1984]
На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что ∠AOP = ∠COQ = ∠ABC.
Саша обнаружил, что на калькуляторе осталось ровно n исправных кнопок с цифрами. Оказалось, что любое натуральное число от 1 до 99999999 можно либо набрать, используя лишь исправные кнопки, либо получить как сумму двух натуральных чисел, каждое из которых можно набрать, используя лишь исправные кнопки. Каково наименьшее n, при котором это возможно?
Существует ли такой квадратный трёхчлен f(x) = ax² + bx + c с целыми коэффициентами и a, не кратным 2014, что все числа f(1), f(2), ..., f(2014) имеют различные остатки при делении на 2014?
Найдите все такие a и b, что
Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?
Страница: << 199 200 201 202 203 204 205 >> [Всего задач: 1984] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|