ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
С помощью циркуля и линейки разделите данный треугольник на три равновеликих треугольника прямыми, выходящими из одной вершины.
Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа? Был очень жаркий день, и четыре пары выпили вместе 44 бутылки кока-колы. Aнна выпила 2, Бетти 3, Кэрол 4 и Дороти 5 бутылок. М-р Браун выпил столько же бутылок, сколько и его жена, но каждый из других мужчин выпил больше, чем его жена: м-р Грин вдвое, м-р Вайт в три раза и м-р Смит в четыре раза. Назовите жён этих мужчин. Расположите в порядке возрастания числа: 2222, 2222, 2222. Назовём натуральное число "замечательным", если оно – самое маленькое среди всех натуральных чисел с такой же, как у него, суммой цифр. Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01? Обезьянки – Маша, Даша, Глаша и Наташа – съели на обед 16 мисочек манной каши. Каждой обезьянке что-то досталось. Глаша и Наташа вместе съели 9 порций. Маша съела больше Даши, больше Глаши и больше Наташи. Сколько мисочек каши досталось обезьянке Даше? Путешественник оказался в какой-то из двух стран — А или Я. Он знает, что все жители страны А по четным числам говорят правду, а по нечетным — лгут, а жители страны Я — наоборот, по нечетным числам говорят правду, а по четным — лгут. Притом все они часто ездят в гости друг к другу. Может ли путешественник, задав один-единственный вопрос первому встречному, узнать, в какой из стран он находится?
Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.
Найдите последнюю цифру числа 19891989. Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей? В равнобедренном треугольнике ABC на продолжении основания BC за точку C взята точка D. Докажите, что угол ABC больше угла ADC. Найдите последнюю цифру числа 250. Доказать, что при любых натуральных m и n число 10m + 1 не делится на 10n − 1. Сказка о царе Салтане. В подвалах Князя Гвидона среди мешков с золотыми монетами, отлитыми из ореховых скорлупок, затесался один, в котором все монеты фальшивые. И мешок, и монеты выглядят точно так же, как настоящие, но настоящая монета весит 20 золотников, а фальшивая — 15. Как с помощью одного (!) взвешивания определить, в каком мешке фальшивые монеты? В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел? |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 1957]
Существуют ли такие три попарно различных натуральных числа a, b и c, что числа a + b + c и a · b · c являются квадратами некоторых натуральных чисел?
В строку выписано 39 чисел, не равных нулю. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел? (Укажите все варианты и докажите, что других нет.)
Внутри параллелограмма ABCD отмечена точка K. Точка M – середина BC, точка P – середина KM. Докажите, что если ∠APB = ∠CPD = 90°, то AK = DK.
В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение a?b обозначает одно из следующих: a – b, b – a или a + b. Вам неизвестно, как записываются числа в этом государстве, но переменные a, b и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!" и "?" записать выражение, которое гарантированно равно 20a – 18b.
В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел?
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке