Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Плачко В.

Докажите, что предпоследняя цифра любой степени числа 3 чётна.

Вниз   Решение


Во время бала каждый юноша танцевал вальс с девушкой либо более красивой, чем на предыдущем танце, либо более умной, а один – с девушкой одновременно более красивой и более умной. Могло ли такое быть? (Юношей и девушек на балу было поровну.)

ВверхВниз   Решение


Позиционная система счисления. Докажите, что при q $ \geqslant$ 2 каждое натуральное число n может быть единственным образом представлено в виде

n = akqk + ak - 1qk - 1 +...+ a1q + a0,

где 0 $ \leqslant$ a0,..., ak < q

ВверхВниз   Решение


Автор: Иванов В.

  а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
  б) Тот же вопрос для 12-угольника.

ВверхВниз   Решение


Автор: Фольклор

Петя хочет изготовить необычную игральную кость, которая, как обычно, должна иметь форму куба, на гранях которого нарисованы точки (на разных гранях разное число точек), но при этом на каждых двух соседних гранях число точек должно различаться по крайней мере на два (при этом разрешается, чтобы на некоторых гранях оказалось больше шести точек). Сколько всего точек необходимо для этого нарисовать?

ВверхВниз   Решение


Рассматриваются такие наборы действительных чисел  {x1, x2, x3, ..., x20},  заключённых между 0 и 1, что  x1x2x3...x20 = (1 – x1)(1 – x2)(1 – x3)...(1 – x20).  Найдите среди этих наборов такой, для которого значение x1x2x3...x20 максимально.

ВверхВниз   Решение


а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

ВверхВниз   Решение


Автор: Фольклор

Доказать, что в вершинах многогранника можно расставить натуральные числа так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.

ВверхВниз   Решение


Автор: Фольклор

Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 66711

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9,10,11

Окружность, проходящая через вершину $B$ прямого угла и середину гипотенузы прямоугольного треугольника $ABC$, пересекает катеты этого треугольника в точках $M$ и $N$. Оказалось, что $AC = 2MN$. Докажите, что $M$ и $N$ — середины катетов треугольника $ABC$.
Прислать комментарий     Решение


Задача 66712

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Разложение на множители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.
Прислать комментарий     Решение


Задача 66716

Темы:   [ Пятиугольники ]
[ Вписанные и описанные окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3
Классы: 8,9,10,11

Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?

Прислать комментарий     Решение

Задача 66735

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Алгебра и арифметика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?

Прислать комментарий     Решение

Задача 66742

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .