Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Пусть a и n – натуральные числа, большие 1. Докажите, что если число  an + 1  простое, то a чётно и  n = 2k.
(Числа вида  fk = 22k + 1  называются числами Ферма.)

Вниз   Решение


Даны две непересекающиеся окружности с центрами в точках O1 и O2. Пусть a1 и a2 — внутренние касательные к этим окружностям, a3 и a4 — внешние касательные к ним. Пусть, далее, a5 и a6 — касательные к окружности с центром в O1, проведённые из точки O2, a7 и a8 — касательные к окружности с центром в точке O2, проведённые из точки O1. Обозначим через O точку пересечения a1 и a2. Доказать, что с центром в точке O можно провести две окружности так, чтобы первая касалась a3 и a4, вторая касалась a5, a6, a7, a8, причём радиус второй в два раза меньше радиуса первой.

ВверхВниз   Решение


К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.

ВверхВниз   Решение


Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида:
e1 = 2,  en = e1e2...en–1 + 1  (n ≥ 2).  Все ли числа en являются простыми?

ВверхВниз   Решение


Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число  ab – 1  принадлежало другому?

ВверхВниз   Решение


Докажите неравенство  pn+1 < p1p2...pn  (pkk-е простое число).

ВверхВниз   Решение


Дан квадрат со стороной 1. Найти геометрическое место точек, сумма расстояний от которых до сторон этого квадрата или их продолжений равна 4.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD нет параллельных сторон. Углы, образованные сторонами четырёхугольника с диагональю AC, равны (в каком-то порядке) 16°, 19°, 55° и 55°. Каким может быть острый угол между диагоналями AC и BD?

ВверхВниз   Решение


Дан 101 прямоугольник с целыми сторонами, не превышающими 100.
Докажите, что среди них найдутся три прямоугольника A, B, C, которые можно поместить друг в друга (так что  ABC).

ВверхВниз   Решение


В таблице из n столбцов и 2n строк, в которых выписаны все возможные различные наборы из n чисел 1 и –1, некоторые числа заменены нулями. Докажите, что можно выбрать некоторое непустое подмножество строк так, что:
  а) сумма всех чисел в выбранных строках равна 0;
  б) сумма всех выбранных строк есть нулевая строка.
(Строки складываются покоординатно как векторы.)

ВверхВниз   Решение


Автор: Звонкин Д.

На плоскости нарисованы два выпуклых многоугольника P и Q. Для каждой стороны многоугольника P многоугольник Q можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через h расстояние между этими прямыми, а через l – длину стороны и вычислим произведение lh. Просуммировав такие произведения по всем сторонам P, получим некоторую величину  (P, Q).  Докажите, что  (P, Q) = (Q, P).

ВверхВниз   Решение


Звездолёт находится в полупространстве на расстоянии $a$ от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной

а) не более $14а$;

б) не более $13а$?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



Задача 67081

Темы:   [ Процессы и операции ]
[ Индукция (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шень А.Х.

На доске написана буква А. Разрешается в любом порядке и количестве:
  а) приписывать А слева;
  б) приписывать Б справа;
  в) одновременно приписывать Б слева и А справа.
Например, БААБ так получить можно  (A → БAA → БААБ),  а АББА – нельзя. Докажите, что при любом натуральном $n$ половину слов длины $n$ получить можно, а другую половину – нельзя.

Прислать комментарий     Решение

Задача 67023

Темы:   [ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Простые числа и их свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

Прислать комментарий     Решение

Задача 67054

Темы:   [ Четность и нечетность ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?

Прислать комментарий     Решение

Задача 67085

Темы:   [ Максимальное/минимальное расстояние ]
[ Стереометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Звездолёт находится в полупространстве на расстоянии $a$ от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной

а) не более $14а$;

б) не более $13а$?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .