|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника? Два равносторонних треугольника ABC и CDE имеют общую вершину (см. рис). Найдите угол между прямыми AD и BE. Развертка боковой поверхности конуса представляет сектор с углом в 120o; в конус вписана треугольная пирамида, углы основания которой составляют арифметическую прогрессию с разностью 15o. Определить угол наклона к плоскости основания наименьшей из боковых граней. |
Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1984]
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
Про трапецию ABCD с основаниями AD и BC известно, что AB = BD. Пусть точка M – середина боковой стороны CD, а O – точка пересечения отрезков AC и BM. Докажите, что треугольник BOC – равнобедренный.
Король вызвал двух мудрецов и объявил им задание: первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвертое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1984] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|