Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Средний возраст одиннадцати игроков футбольной команды – 22 года. Во время матча один из игроков получил травму и ушёл с поля. Средний возраст оставшихся на поле игроков стал равен 21 году. Сколько лет футболисту, получившему травму?

Вниз   Решение


В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
Докажите, что у одного из дедов в этой школе учится не менее 14 внуков и внучек.

ВверхВниз   Решение


Сколько существует девятизначных чисел, сумма цифр которых чётна?

ВверхВниз   Решение


Сколькими способами можно разбить 14 человек на пары?

ВверхВниз   Решение


Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6.

ВверхВниз   Решение


Докажите, что произведение любых пяти последовательных чисел делится   а) на 30;   б) на 120.

ВверхВниз   Решение


Имеется кучка из 100 камней. Двое играют в следующую игру. Первый игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл соперник?

ВверхВниз   Решение


Высота усечённого конуса равна радиусу его большего основания; периметр правильного шестиугольника, описанного около меньшего основания, равен периметру равностороннего треугольника, вписанного в большее основание. Определить угол наклона образующей конуса к плоскости основания.

ВверхВниз   Решение


Развертка боковой поверхности конуса представляет сектор с углом в 120o; в конус вписана треугольная пирамида, углы основания которой составляют арифметическую прогрессию с разностью 15o. Определить угол наклона к плоскости основания наименьшей из боковых граней.

Вверх   Решение

Задачи

Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1957]      



Задача 67317

Темы:   [ Теория игр (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7,8,9,10,11

Имеется кучка из 100 камней. Двое играют в следующую игру. Первый игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл соперник?
Прислать комментарий     Решение


Задача 76416

Тема:   [ Пирамида (прочее) ]
Сложность: 3+
Классы: 10,11

Пирамида, все боковые рёбра которой наклонены к плоскости основания под углом $ \varphi$, имеет в основании равнобедренный треугольник с углом $ \alpha$, заключённым между равными сторонами. Определить двугранный угол при ребре, соединяющем вершину пирамиды с вершиной угла $ \alpha$.
Прислать комментарий     Решение


Задача 76419

Тема:   [ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

Найти объём правильной четырёхугольной пирамиды, стороны основания которой a, а плоские углы при вершине равны углам наклона боковых рёбер к плоскости основания.
Прислать комментарий     Решение


Задача 76422

Тема:   [ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 10,11

Высота усечённого конуса равна радиусу его большего основания; периметр правильного шестиугольника, описанного около меньшего основания, равен периметру равностороннего треугольника, вписанного в большее основание. Определить угол наклона образующей конуса к плоскости основания.
Прислать комментарий     Решение


Задача 76425

Темы:   [ Тетраэдр (прочее) ]
[ Свойства разверток ]
Сложность: 3+
Классы: 10,11

Развертка боковой поверхности конуса представляет сектор с углом в 120o; в конус вписана треугольная пирамида, углы основания которой составляют арифметическую прогрессию с разностью 15o. Определить угол наклона к плоскости основания наименьшей из боковых граней.
Прислать комментарий     Решение


Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .