ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Средний возраст одиннадцати игроков футбольной команды – 22 года. Во время матча один из игроков получил травму и ушёл с поля. Средний возраст оставшихся на поле игроков стал равен 21 году. Сколько лет футболисту, получившему травму? В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед. Сколько существует девятизначных чисел, сумма цифр которых чётна? Сколькими способами можно разбить 14 человек на пары? Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6. Докажите, что произведение любых пяти последовательных чисел делится а) на 30; б) на 120. Имеется кучка из 100 камней. Двое играют в следующую игру. Первый игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл соперник? Высота усечённого конуса равна радиусу его большего основания; периметр правильного шестиугольника, описанного около меньшего основания, равен периметру равностороннего треугольника, вписанного в большее основание. Определить угол наклона образующей конуса к плоскости основания. Развертка боковой поверхности конуса представляет сектор с углом в 120o; в конус вписана треугольная пирамида, углы основания которой составляют арифметическую прогрессию с разностью 15o. Определить угол наклона к плоскости основания наименьшей из боковых граней. |
Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1957]
Имеется кучка из 100 камней. Двое играют в следующую игру. Первый игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл соперник?
Пирамида, все боковые рёбра которой наклонены к плоскости основания
под углом
Найти объём правильной четырёхугольной пирамиды, стороны основания которой a, а плоские углы при вершине равны углам наклона боковых рёбер к плоскости основания.
Высота усечённого конуса равна радиусу его большего основания; периметр правильного шестиугольника, описанного около меньшего основания, равен периметру равностороннего треугольника, вписанного в большее основание. Определить угол наклона образующей конуса к плоскости основания.
Развертка боковой поверхности конуса представляет сектор с углом в 120o; в конус вписана треугольная пирамида, углы основания которой составляют арифметическую прогрессию с разностью 15o. Определить угол наклона к плоскости основания наименьшей из боковых граней.
Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке