ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На продолжениях сторон A1A2, A2A3, ..., AnA1 правильного n-угольника (n ≥ 5) A1A2...An построить точки B1, B2, ..., Bn так, чтобы B1B2 было перпендикулярно к A1A2, B2B3 перпендикулярно к A2A3, ..., BnB1 перпендикулярно к AnA1.

   Решение

Задачи

Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 1957]      



Задача 78076

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9

Точка O — центр круга, описанного около треугольника ABC. Точки A1, B1 и C1 симметричны точке O относительно сторон треугольника ABC. Докажите, что все высоты треугольника A1B1C1 проходят через точку O, а все высоты треугольника ABC проходят через центр круга, описанного около треугольника A1B1C1.
Прислать комментарий     Решение


Задача 78083

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 9

Все точки данного отрезка AB проектируются на всевозможные прямые, проходящие через данную точку O. Найти геометрическое место этих проекций.
Прислать комментарий     Решение


Задача 78092

Темы:   [ Правильные многоугольники ]
[ Итерации ]
Сложность: 3+
Классы: 11

На продолжениях сторон A1A2, A2A3, ..., AnA1 правильного n-угольника (n ≥ 5) A1A2...An построить точки B1, B2, ..., Bn так, чтобы B1B2 было перпендикулярно к A1A2, B2B3 перпендикулярно к A2A3, ..., BnB1 перпендикулярно к AnA1.

Прислать комментарий     Решение

Задача 78098

Темы:   [ Концентрические окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 9,10

Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым.
Прислать комментарий     Решение


Задача 78112

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?
Прислать комментарий     Решение


Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .