Страница:
<< 164 165 166 167
168 169 170 >> [Всего задач: 1984]
На продолжениях сторон A1A2, A2A3, ..., AnA1 правильного n-угольника (n ≥ 5) A1A2...An построить точки B1, B2, ..., Bn так, чтобы B1B2 было перпендикулярно к A1A2, B2B3 перпендикулярно к A2A3, ..., BnB1
перпендикулярно к AnA1.
|
|
|
Сложность: 3+ Классы: 9,10
|
Найти геометрическое место четвёртых вершин прямоугольников, три вершины
которых лежат на двух данных концентрических окружностях, а стороны параллельны
двум данным прямым.
В треугольнике известны две стороны
a и
b. Какой должна быть третья
сторона, чтобы наибольший угол треугольника имел наименьшую величину?
На стол кладут правильный 100-угольник, в вершинах которого написаны числа
1, 2, ..., 100. Затем эти числа переписывают в порядке удаления от переднего
края стола. Если две вершины находятся на равном расстоянии от края, сначала
выписывается левое число, затем правое. Выписаны всевозможные наборы чисел,
соответствующие разным положениям 100-угольника. Вычислить сумму чисел,
стоящих в этих наборах на 13-х местах слева.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Обозначим через
a наименьшее число кругов радиуса 1, которыми можно
полностью покрыть заданный многоугольник
M, через
b — наибольшее число
непересекающихся кругов радиуса 1 с центрами внутри многоугольника
M.
Какое из чисел больше,
a или
b?
Страница:
<< 164 165 166 167
168 169 170 >> [Всего задач: 1984]