Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.

Вниз   Решение


Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

ВверхВниз   Решение


Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.

ВверхВниз   Решение


На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.

ВверхВниз   Решение


Выбрать 100 чисел, удовлетворяющих условиям  x1 = 1,  0 ≤ x1 ≤ 2x1,  0 ≤ x3 ≤ 2x2,  ...,  0 ≤ x99 ≤ 2x98,  0 ≤ x100 ≤ 2x99, так, чтобы выражение
x1x2 + x3x4 + ... + x99x100  было максимально.

ВверхВниз   Решение


Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.

ВверхВниз   Решение


Докажите, что при повороте окружность переходит в окружность.

ВверхВниз   Решение


На шахматной доске 20×20 стоят 10 ладей и один король. Король не стоит под шахом и идёт из левого угла в правый верхний по диагонали. Ходят по очереди: сначала король, потом одна из ладей. Доказать, что при любом начальном расположении ладей и любом способе маневрирования ими король попадёт под шах.

ВверхВниз   Решение


Сторона основания и высота правильной четырёхугольной пирамиды равны a . Найдите радиус вписанного шара.

ВверхВниз   Решение


Внутри треугольника ABC взята точка M. Докажите, что угол BMC больше угла BAC.

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение  SAFD : SABC,  если  AB : AC : BC = 21 : 28 : 20.

ВверхВниз   Решение


В равнобедренном треугольнике ABC с основанием AC и углом при вершине B, равным 36°, проведена биссектриса AD.
Докажите, что треугольники CDA и ADB равнобедренные.

ВверхВниз   Решение


Известно, что при пересечении прямых a и b третьей прямой образовалось 8 углов. Четыре из этих углов равны 80°, а четыре других равны 100°.
Следует ли из этого, что прямые a и b параллельны?

ВверхВниз   Решение


Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов?

ВверхВниз   Решение


Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b  (a > b).

ВверхВниз   Решение


Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?

Вверх   Решение

Задачи

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 1982]      



Задача 78586

Темы:   [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9

Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.

Прислать комментарий     Решение


Задача 78592

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 9,10,11

Какое максимальное число дамок можно поставить на чёрных полях шахматной доски размером 8×8 так, чтобы каждую дамку била хотя бы одна из остальных?

Прислать комментарий     Решение

Задача 78615

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3+
Классы: 8,9,10

Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа освещает круг радиуса, равного высоте, на которой она висит?
Прислать комментарий     Решение


Задача 78617

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,  

Прислать комментарий     Решение

Задача 78620

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 9,10

На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?
Прислать комментарий     Решение


Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .