ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 2393]      



Задача 109232

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Двугранный угол при основании правильной n -угольной пирамиды равен β . Найдите двугранный угол между соседними боковыми гранями.
Прислать комментарий     Решение


Задача 109233

Темы:   [ Прямая призма ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109235

Темы:   [ Прямая призма ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит равнобедренная трапеция с острым углом α . Боковая сторона трапеции и её меньшее основание равны. Найдите объём призмы, если диагональ призмы равна a и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109236

Темы:   [ Прямая призма ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .
Прислать комментарий     Решение


Задача 109240

Темы:   [ Перпендикулярные плоскости ]
[ Сфера, описанная около тетраэдра ]
Сложность: 3
Классы: 10,11

В треугольной пирамиде SABC две равные боковые грани ASB и CSB перпендикулярны плоскости основания, а грань ASC наклонена к плоскости основания под углом β . Найдите радиус шара описанного около пирамиды, если радиус окружности, описанной около основания, равен r и ABC = α .
Прислать комментарий     Решение


Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .