ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что некоторая точка M в пространстве равноудалена от вершин плоского многоугольника. Докажите, что этот многоугольник является вписанным, причём центр его описанной окружности есть ортогональная проекция точки M на плоскость многоугольника.

   Решение

Задачи

Страница: << 196 197 198 199 200 201 202 >> [Всего задач: 2393]      



Задача 110264

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Известно, что некоторая точка M в пространстве равноудалена от вершин плоского многоугольника. Докажите, что этот многоугольник является вписанным, причём центр его описанной окружности есть ортогональная проекция точки M на плоскость многоугольника.
Прислать комментарий     Решение


Задача 110265

Темы:   [ Перпендикулярность прямой и плоскости ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Все боковые рёбра пирамиды равны b , а высота равна h . Найдите радиус описанной около основания окружности.
Прислать комментарий     Решение


Задача 110266

Темы:   [ Правильный тетраэдр ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Найдите двугранные углы правильного тетраэдра.
Прислать комментарий     Решение


Задача 110267

Темы:   [ Правильный тетраэдр ]
[ Перпендикулярность прямой и плоскости ]
Сложность: 3
Классы: 10,11

Найдите высоту правильного тетраэдра с ребром a .
Прислать комментарий     Решение


Задача 110268

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Сколько существует различных пирамид, все рёбра которых равны 1?
Прислать комментарий     Решение


Страница: << 196 197 198 199 200 201 202 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .