Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 31 задача
Версия для печати
Убрать все задачи

Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что AKB'+ BKA'= ALB'+ BLA'=180o . Докажите, что прямая KL равноудалена от точек A' , B' , C' .

Вниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 1 : 2, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.

ВверхВниз   Решение


Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

ВверхВниз   Решение


В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

ВверхВниз   Решение


Точки E и F – середины сторон AB и AD параллелограмма ABCD, а отрезки CE и BF пересекаются в точке K. Точка M лежит на отрезке EC, причём  BM || KD.  Докажите, что площади треугольника KFD и трапеции KBMD равны.

ВверхВниз   Решение


Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

ВверхВниз   Решение


На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что  

ВверхВниз   Решение


Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

ВверхВниз   Решение


В розетку электросети подключены приборы, общее сопротивление которых составляет R=80  Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление Ry  этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Rx  и Ry  их общее сопротивление даётся формулой R= , а для нормального функционирования электросети, общее сопротивление в ней должно быть не меньше 30 Ом.

ВверхВниз   Решение


На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.

ВверхВниз   Решение


Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен  (ax + b)1000 – (cx + d)1000  после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.

ВверхВниз   Решение


Дан треугольник ABC и линейка, на которой отмечены два отрезка, равные AC и BC . Пользуясь только этой линейкой, найдите центр вписанной окружности треугольника, образованного средними линиями ABC .

ВверхВниз   Решение


Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

ВверхВниз   Решение


Электрик был вызван для ремонта гирлянды из четырёх соединённых последовательно лампочек, одна из которых перегорела. На вывинчивание любой лампочки из гирлянды уходит 10 секунд, на завинчивание -- 10 секунд. Время, которое тратится на другие действия, мало. За какое наименьшее время электрик заведомо может найти перегоревшую лампочку, если у него есть одна запасная лампочка?

ВверхВниз   Решение


В розетку электросети подключены приборы, общее сопротивление которых составляет 100 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями R1  и  R2  их общее сопротивление даётся формулой R= , а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 20 Ом.

ВверхВниз   Решение


Коэффициент полезного действия некоторого двигателя определяется формулой = 100 %. При каких значениях температуры нагревателя T1 КПД этого двигателя будет больше 30 %, если температура холодильника T2 = 350 ?

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 2 : 1, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

ВверхВниз   Решение


В розетку электросети подключены приборы, общее сопротивление которых составляет R=60  Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление Ry  этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Rx  и Ry  их общее сопротивление даётся формулой R= , а для нормального функционирования электросети, общее сопротивление в ней должно быть не меньше 15 Ом.

ВверхВниз   Решение


Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что  KL || O1O2.

ВверхВниз   Решение


На одной стороне угла A взяты точки B, C, D, а на другой – точки E, F, G, так, что  FDBC,  CGEF,  ECBD,  BFEG.  Отношение длины отрезка BE к расстоянию от точки A до центра описанной вокруг четырёхугольника BDGE окружности равно 20/17. Найдите величину угла A.

ВверхВниз   Решение


В некоторый угол B вписаны две непересекающиеся окружности. Окружность большего радиуса касается сторон этого угла в точках A и C, меньшего — в точках A1 и C1(точки A, A1 и C, C1 лежат на разных сторонах угла B). Прямая AC1 пересекает окружности большего и меньшего радиусов в точках E и F соответственно. Найдите отношение площадей треугольников ABC1 и A1BC1, если A1B = 2, EF = 1, а длина AE равна среднему арифметическому длин BC1 и EF.

ВверхВниз   Решение


Автор: Ботин Д.А.

48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на 1 подкову 5 минут? (Лошадь не может стоять на двух ногах.)

ВверхВниз   Решение


Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

ВверхВниз   Решение


В розетку электросети подключены приборы, общее сопротивление которых составляет  R=50 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление Ry этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Rx и Ry их общее сопротивление даётся формулой R= , а для нормального функционирования электросети, общее сопротивление в ней должно быть не меньше 30 Ом.

ВверхВниз   Решение


В трапеции ABCD с боковыми сторонами  AB = 8  и  CD = 5  биссектриса угла B пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла D пересекает те же две биссектрисы в точках L и K, причём точка L лежит на основании BC.
  а) В каком отношении прямая MK делит сторону AB, а прямая LN – сторону AD?
  б) Найдите отношение  KL : MN,  если  LM : KN = 4 : 7.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC выбраны соответственно точки X и Y так, что  ∠AXY = 2∠C,  ∠CYX = 2∠A.
Докажите неравенство  

ВверхВниз   Решение


Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого действительны и также принадлежат M?

ВверхВниз   Решение


На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что  

ВверхВниз   Решение


Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 111878

Темы:   [ Кубические многочлены ]
[ Свойства коэффициентов многочлена ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].
Прислать комментарий     Решение


Задача 65736

Темы:   [ Инварианты ]
[ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена  f и g и заменить их на такие два приведённых многочлена 37-й степени  f1 и g1, что  f + g = f1 + g1  или  fg = f1g1.  Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней.

Прислать комментарий     Решение

Задача 77932

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Свойства коэффициентов многочлена ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

При делении многочлена  x1951 – 1  на  x4 + x³ + 2x² + x + 1  получается частное и остаток. Найти в частном коэффициент при x14.

Прислать комментарий     Решение

Задача 109844

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Свойства коэффициентов многочлена ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

Прислать комментарий     Решение

Задача 60985

 [Правило знаков Декарта]
Темы:   [ Многочлены (прочее) ]
[ Свойства коэффициентов многочлена ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Докажите, что количество положительных корней многочлена  f(x) = anxn + ... + a1x + a0  не превосходит числа перемен знака в последовательности  an, ..., a1, a0.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .