ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.
Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел. Пусть M и N — середины сторон CD и DE правильного
шестиугольника ABCDEF, P — точка пересечения отрезков AM
и BN.
Числовая последовательность A1, A2, ..., An, ... определена равенствами A1 = 1, A2 = – 1, An = – An–1 – 2An–2 (n ≥ 3). Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn}) разрешается получать последовательности
{bn + cn}, б) в) Делится ли 222555 + 555222 на 7? В классе 30 учеников. Докажите, что вероятность того, что у каких-нибудь двух учеников совпадают дни рождения, составляет больше 50%. Используя результат задачи 61403, докажите неравенства:
в)
С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM. Точки A1, B1, C1 – середины сторон соответственно BC, AC, AB треугольника ABC. Известно, что A1A и B1B – биссектрисы углов треугольника A1B1C1. Найдите углы треугольника ABC. |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1442]
В треугольнике ABC известно, что AB=c ,
BC=a , AC=b ; O — центр окружности,
касающейся стороны AB и продолжений сторон
AC и BC , D — точка пересечения луча
CO со стороной AB . Найдите отношение
Точки K , L , M и N — середины сторон соответственно AB , BC , CD и AD параллелограмма ABCD площади s . Найдите площадь четырёхугольника, образованного пересечением прямых AL , AM , CK и CN .
Точки A1, B1, C1 – середины сторон соответственно BC, AC, AB треугольника ABC. Известно, что A1A и B1B – биссектрисы углов треугольника A1B1C1. Найдите углы треугольника ABC.
AD – диаметр окружности, описанной около четырёхугольника ABCD. Точка E симметрична точке A относительно середины BC.
В треугольнике АВС медиана ВМ в два раза меньше стороны АВ и образует с ней угол 40°. Найдите угол АВС.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1442]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке