ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольном параллелепипеде ABCDA1B1C1D1 четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с положительной разностью d, причём AA1 < AB < BC. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB1A1, ADD1A1, ABCD, а вторая – граней BCC1B1, CDD1C1, A1B1C1D1. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и AC1; в) радиус R.

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 257]      



Задача 110536

Темы:   [ Cфера, вписанная в призму ]
[ Объем тела равен сумме объемов его частей ]
[ Сфера, вписанная в двугранный угол ]
[ Сфера, вписанная в трехгранный угол ]
Сложность: 4
Классы: 10,11

Все грани призмы ABCDABCD₁ касаются некоторого шара. Основанием призмы служит ромб ABCD. Угол BBC ─ острый,
BBA = arctg 
5
3
, ∠ABC = 
π
3
, а AB = 
5√2
3
. Найдите ∠BBC, угол между боковым ребром и плоскостью основания призмы, а также
расстояние от точки B до точки касания шара с плоскостью DDC.
Прислать комментарий     Решение


Задача 65234

Темы:   [ Сферы (прочее) ]
[ Пересекающиеся окружности ]
[ Перпендикулярные плоскости ]
[ Окружности на сфере ]
Сложность: 4+
Классы: 10,11

В пространстве дан треугольник ABC и сферы S1 и S2, каждая из которых проходит через точки A, B и C. Для точек M сферы S1, не лежащих в плоскости треугольника ABC, проводятся прямые MA, MB и MC, пересекающие сферу S2 вторично в точках A1, B1 и C1 соответственно. Докажите, что плоскости, проходящие через точки A1, B1 и C1, касаются фиксированной сферы либо проходят через фиксированную точку.

Прислать комментарий     Решение

Задача 65811

Темы:   [ Сфера, касающаяся ребер тетраэдра ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Касающиеся сферы ]
Сложность: 4+
Классы: 10,11

Автор: Ивлев Ф.

Дан тетраэдр, в который можно вписать сферу, касающуюся всех его рёбер. Пусть отрезки касательных из вершин равны a, b, c и d. Всегда ли можно из этих четырёх отрезков сложить какой-нибудь треугольник? (Не обязательно использовать все отрезки. Разрешается образовывать сторону треугольника из двух отрезков.)

Прислать комментарий     Решение

Задача 73549

Темы:   [ Раскраски ]
[ Описанные многогранники ]
[ Выпуклые тела ]
[ Касательные к сферам ]
Сложность: 5-
Классы: 10,11

У выпуклого белого многогранника некоторые грани покрашены чёрной краской так, что никакие две чёрные грани не имеют общего ребра. Докажите, что если а) чёрных граней больше половины; б) сумма площадей чёрных граней больше суммы площадей белых граней, то в этот многогранник нельзя вписать шар.
Прислать комментарий     Решение


Задача 116524

Темы:   [ Углы между прямыми и плоскостями ]
[ Касающиеся сферы ]
[ Прямоугольные параллелепипеды ]
[ Расстояние между двумя точками. Уравнение сферы ]
[ Сфера, вписанная в трехгранный угол ]
Сложность: 3
Классы: 10,11

В прямоугольном параллелепипеде ABCDA1B1C1D1 четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с положительной разностью d, причём AA1 < AB < BC. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB1A1, ADD1A1, ABCD, а вторая – граней BCC1B1, CDD1C1, A1B1C1D1. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и AC1; в) радиус R.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .