Страница:
<< 55 56 57 58 59 60
61 >> [Всего задач: 303]
ABCD – выпуклый четырёхугольник. Окружности, построенные
на отрезках
AB и
CD как на диаметрах, касаются внешним образом
в точке
M , отличной от точки пересечения диагоналей четырёхугольника.
Окружность, проходящая через точки
A ,
M и
C , вторично пересекает
прямую, соединяющую точку
M и середину
AB в точке
K , а окружность,
проходящая через точки
B ,
M и
D , вторично пересекает ту же прямую
в точке
L . Докажите, что
|MK-ML| = |AB-CD| .
|
|
Сложность: 3+ Классы: 8,9,10
|
На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда |PQ| = |QR|.
|
|
Сложность: 5+ Классы: 10,11
|
В треугольной пирамиде
ABCD все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках
ABC ,
ABD ,
ACD
лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер
AB ,
AC ,
AD .
|
|
Сложность: 3+ Классы: 8,9,10
|
Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)
Страница:
<< 55 56 57 58 59 60
61 >> [Всего задач: 303]