Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Продолжения биссектрис остроугольного треугольника ABC пересекают описанную окружность в точках A1, B1 и C1 соответственно. Докажите, что высоты треугольника A1B1C1 лежат на прямых AA1, BB1иCC1.

Вниз   Решение


Внутри угла с вершиной O взята некоторая точка M. Луч OM образует со сторонами угла углы, один из которого больше другого на 10o; A и B — проекции точки M на стороны угла. Найдите угол между прямыми AB и OM.

ВверхВниз   Решение


В треугольнике ABC угол B — прямой, величина угол C равен $ \alpha$ ( $ \alpha$ > $ {\frac{\pi}{4}}$), точка D — середина гипотенузы. Точка A1 симметрична точке A относительно прямой BD. Найдите угол BA1C.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Первая окружность проходит через центр второй и её хорда BD пересекает вторую окружность в точке C и делит дугу ACB в отношении AC : CB = n. В каком отношении точка D делит дугу ADB?

ВверхВниз   Решение


Автор: Кноп К.А.

Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.

ВверхВниз   Решение


Даны две точки A и B. Найдите геометрическое место точек, каждая из которых симметрична точке A относительно некоторой прямой, проходящей через точку B.

ВверхВниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.

ВверхВниз   Решение


Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.

ВверхВниз   Решение


Автор: Нилов Ф.

Окружность $\omega$ касается прямых $a$ и $b$ в точках $A$ и $B$ соответственно. Произвольная касательная к $\omega$ пересекает $a$ и $b$ в точках $X$ и $Y$ соответственно. Точки $X'$ и $Y'$ симметричны точкам $X$ и $Y$ относительно $A$ и $B$ соответственно. Найдите геометрическое место проекций центра окружности на $X'Y'$.

ВверхВниз   Решение


Найдите геометрическое место середин хорд данной окружности, проходящих через данную точку.

ВверхВниз   Решение


Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ ($AD > BC$) пересекаются в точке $P$. На отрезке $AD$ нашлась такая точка $Q$, что $BQ=CQ$. Докажите, что линия центров окружностей, описанных около треугольников $AQC$ и $BQD$, перпендикулярна прямой $PQ$.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Через точку B проводится прямая, пересекающая вторично окружности в точках C и D, а затем через точки C и D проводятся касательные к этим окружностям. Докажите, что точки A, C, D и точка P пересечения касательных лежат на одной окружности.

ВверхВниз   Решение


В квадрате ABCD из точки D как из центра проведена внутри квадрата дуга через вершины A и C. На AD как на диаметре построена внутри квадрата полуокружность. Отрезок прямой, соединяющей произвольную точку P дуги AC с точкой D, пересекает полуокружность AD в точке K. Докажите, что длина отрезка PK равна расстоянию от точки P до стороны AB.

ВверхВниз   Решение


В треугольнике ABC известно, что AB = 20, AC = 24. Известно также, что вершина C, центр вписанного в треугольник ABC круга и точка пересечения биссектрисы угла A со стороной BC лежат на окружности, центр которой лежит на стороне AC. Найдите радиус описанной около треугольника ABC окружности.

ВверхВниз   Решение


AM — биссектриса треугольника ABC. Точка D принадлежит стороне AC, причём $ \angle$DMC = $ \angle$BAC. Докажите, что BM = MD.

ВверхВниз   Решение


Стороны KN и LM трапеции KLMN параллельны, причём KN = 3, а угол M равен 120o. Прямые LM и MN являются касательными к окружности, описанной около треугольника KLN. Найдите площадь треугольника KLN.

ВверхВниз   Решение


За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?

ВверхВниз   Решение


Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.

ВверхВниз   Решение


В равнобедренной трапеции ABCD с основаниями BC и AD диагонали AC и BD перпендикулярны. Из точки D опущен перпендикуляр DE на сторону AB, а из точки C – перпендикуляр CF на прямую DE. Докажите, что  ∠DBF = ½ ∠FCD.

ВверхВниз   Решение


На плоскости расположены два квадрата ABCD и BKLN так, что точка K лежит на продолжении AB за точку B, а N лежит на луче BC.
Найдите угол между прямыми DL и AN.

Вверх   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 501]      



Задача 52385

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Связь величины угла с длиной дуги и хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Во вписанном четырёхугольнике ABCD известны углы:  ∠DAB = α,  ∠ABC = β,  ∠BKC = γ,  где K – точка пересечения диагоналей. Найдите угол ACD.

Прислать комментарий     Решение


Задача 52403

Темы:   [ Признаки подобия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K.
Найдите KC, если  BC = 4,  а  AK = 6.

Прислать комментарий     Решение

Задача 52490

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

Докажите, что если в выпуклом пятиугольнике ABCDE  ABC = ∠ADE  и ∠AEC = ∠ADB,  то  ∠BAC = ∠DAE.

Прислать комментарий     Решение

Задача 52814

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Три точки, лежащие на одной прямой ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

На плоскости расположены два квадрата ABCD и BKLN так, что точка K лежит на продолжении AB за точку B, а N лежит на луче BC.
Найдите угол между прямыми DL и AN.

Прислать комментарий     Решение

Задача 53139

Темы:   [ Теорема синусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Автор: Чиник В.И.

Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .