ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.
Пусть в выпуклом четырёхугольнике ABCD нет параллельных сторон. Обозначим через E и F точки пересечения прямых AB и DC, BC и AD соответственно (точка A лежит на отрезке BE, а точка C — на отрезке BF). Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда ED + BF = DF + BE.
В прямоугольном треугольнике проведена высота из вершины прямого угла. На этой высоте как на диаметре построена окружность. Известно, что эта окружность высекает на катетах отрезки, равные 12 и 18. Найдите катеты.
Прямоугольники $ABCD$ и $DEFG$ расположены так, что точка $D$ лежит на отрезке $BF$, а точки $B$, $C$, $E$, $F$ лежат на одной окружности (см. рисунок). Докажите, что $\angle ACE = \angle CEG$. Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$ В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь). В параллелограмме ABCD известно, что AB = 4, AD = 6. Биссектриса угла BAD пересекает сторону BC в точке M, при этом AM = 4 В остроугольном треугольнике $ABC$ медиана $CM$ и высота $AH$ пересекаются в точке $O$. Вне треугольника отмечена точка $D$ так, что $AOCD$ – параллелограмм. Чему равно $BD$, если известно, что $MO=a$, $OC=b$? Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника. Точка $D$ лежит на основании $AB$ равнобедренного тупоугольного треугольника $ABC$ так, что отрезок $AD$ равен радиусу описанной окружности треугольника $BCD$. Найдите угол $ACD$. Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный. На стороне $AB$ квадрата $ABCD$ вне его построен равнобедренный треугольник $ABE$ ($AE=BE$). Пусть $M$ – середина $AE$, $O$ – точка пересечения $AC$ и $BD$, $K$ – точка пересечения $ED$ и $OM$. Докажите, что $EK=KO$. Остроугольный треугольник разбили медианой на два меньших треугольника. Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны? Для каких n существует выпуклый n-угольник,
у которого одна сторона имеет длину 1, а длины всех диагоналей —
целые числа?
|
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 133]
Выпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше 1 , расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем 1/
Сколько в выпуклом многоугольнике может быть сторон,
равных по длине наибольшей диагонали?
Для каких n существует выпуклый n-угольник,
у которого одна сторона имеет длину 1, а длины всех диагоналей —
целые числа?
Выпуклый фанерный многоугольник P лежит на деревянном столе. В стол можно вбивать гвозди, которые не должны проходить через P, но могут касаться его границы. Фиксирующим называется набор гвоздей, не позволяющий двигать P по столу. Найдите минимальное количество гвоздей, позволяющее зафиксировать любой выпуклый многоугольник.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке