Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

Вниз   Решение


Пусть в выпуклом четырёхугольнике ABCD нет параллельных сторон. Обозначим через E и F точки пересечения прямых AB и DC, BC и AD соответственно (точка A лежит на отрезке BE, а точка C — на отрезке BF). Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда ED + BF = DF + BE.

ВверхВниз   Решение


В прямоугольном треугольнике проведена высота из вершины прямого угла. На этой высоте как на диаметре построена окружность. Известно, что эта окружность высекает на катетах отрезки, равные 12 и 18. Найдите катеты.

ВверхВниз   Решение


Прямоугольники $ABCD$ и $DEFG$ расположены так, что точка $D$ лежит на отрезке $BF$, а точки $B$, $C$, $E$, $F$ лежат на одной окружности (см. рисунок). Докажите, что $\angle ACE = \angle CEG$.

ВверхВниз   Решение


Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).

ВверхВниз   Решение


В параллелограмме ABCD известно, что  AB = 4,  AD = 6.  Биссектриса угла BAD пересекает сторону BC в точке M, при этом  AM = 4.
Найдите площадь четырёхугольника AMCD.

ВверхВниз   Решение


Автор: Попов Л. А.

В остроугольном треугольнике $ABC$ медиана $CM$ и высота $AH$ пересекаются в точке $O$. Вне треугольника отмечена точка $D$ так, что $AOCD$ – параллелограмм. Чему равно $BD$, если известно, что $MO=a$, $OC=b$?

ВверхВниз   Решение


Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.

ВверхВниз   Решение


Точка $D$ лежит на основании $AB$ равнобедренного тупоугольного треугольника $ABC$ так, что отрезок $AD$ равен радиусу описанной окружности треугольника $BCD$. Найдите угол $ACD$.

ВверхВниз   Решение


Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

ВверхВниз   Решение


На стороне $AB$ квадрата $ABCD$ вне его построен равнобедренный треугольник $ABE$ ($AE=BE$). Пусть $M$ – середина $AE$, $O$ – точка пересечения $AC$ и $BD$, $K$ – точка пересечения $ED$ и $OM$. Докажите, что $EK=KO$.

ВверхВниз   Решение


Остроугольный треугольник разбили медианой на два меньших треугольника.
Докажите, что каждый из них можно накрыть полукругом, равным половинке описанного круга исходного треугольника.

ВверхВниз   Решение


Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны?

ВверхВниз   Решение


Для каких n существует выпуклый n-угольник, у которого одна сторона имеет длину 1, а длины всех диагоналей — целые числа?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 133]      



Задача 64981

Темы:   [ Выпуклые многоугольники ]
[ Вписанные и описанные многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Выпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник описанный?

Прислать комментарий     Решение

Задача 109669

Темы:   [ Выпуклые многоугольники ]
[ Наименьший или наибольший угол ]
[ Длины сторон (неравенства) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11

Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.
Прислать комментарий     Решение


Задача 57101

Тема:   [ Выпуклые многоугольники ]
Сложность: 5
Классы: 9

Сколько в выпуклом многоугольнике может быть сторон, равных по длине наибольшей диагонали?
Прислать комментарий     Решение


Задача 57102

Тема:   [ Выпуклые многоугольники ]
Сложность: 5
Классы: 9

Для каких n существует выпуклый n-угольник, у которого одна сторона имеет длину 1, а длины всех диагоналей — целые числа?
Прислать комментарий     Решение


Задача 64811

Темы:   [ Выпуклые многоугольники ]
[ Принцип крайнего (прочее) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10

Выпуклый фанерный многоугольник P лежит на деревянном столе. В стол можно вбивать гвозди, которые не должны проходить через P, но могут касаться его границы. Фиксирующим называется набор гвоздей, не позволяющий двигать P по столу. Найдите минимальное количество гвоздей, позволяющее зафиксировать любой выпуклый многоугольник.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .