ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.
Все рёбра пирамиды ABCD равны между собой. Нарисуйте изображение пирамиды ABCD , полученное в результате ортогонального проектирования на плоскость, параллельную AB и CD . Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли На прямой l в пространстве последовательно расположены точки A , B и C , причём AB = 10 и BC = 22 . Найдите расстояние между прямыми l и m , если если расстояния от точек A , B и C до прямой m равны 12, 13 и 20 соответственно. В море плавает предмет, имеющий форму выпуклого многогранника. Пусть
( На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD
взяты точки K, L, M и N соответственно, причем
AK : KB = DM : MC = Точка X лежит внутри треугольника ABC. Прямые,
проходящие через точку X параллельно AC и BC, пересекают
сторону AB в точках K и L соответственно. Докажите, что
барицентрические координаты точки X равны
(BL : AK : LK).
В таблицу записано девять чисел: a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её
столбцов: a1b1c1 + a2b2c2 + a3b3c3 = a1a2a3 + b1b2b3 + c1c2c3.
Докажите, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то его объём не меньше ⅓ h1h2h3. Нарисуйте изображение куба, полученное в результате ортогонального проектирования куба на плоскость, перпендикулярную: а) одному из рёбер; б) диагонали одной из граней.
Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — диаметр окружности. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.
Внутри выпуклого четырехугольника с суммой длин
диагоналей d расположен выпуклый четырехугольник с суммой длин
диагоналей d'. Докажите, что d' < 2d.
Ортогональные проекции треугольника ABC на две взаимно
перпендикулярные плоскости являются правильными треугольниками
со сторонами 1. Найдите периметр треугольника ABC , если
известно, что AB = Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.
Дана замкнутая ломаная, причем любая другая
замкнутая ломаная с теми же вершинами имеет большую
длину. Докажите, что эта ломаная несамопересекающаяся.
Выпуклый n-угольник помещен в квадрат со стороной 1.
Докажите, что найдутся три такие вершины A, B и C этого n-угольника, что площадь треугольника ABC не превосходит:
а) 8/n2; б) 16 Прожектор освещает угол величиной
90o. Докажите, что в
любых четырех заданных точках можно разместить 4 прожектора так,
что они осветят всю плоскость.
Даны вершины A и C равнобедренной описанной
трапеции ABCD (AD| BC); известны также направления ее
оснований. Постройте вершины B и D.
Докажите теорему Чевы (задача 4.48, б)) с помощью группировки масс.
Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?
Дан выпуклый пятиугольник, все углы которого тупые. Докажите,
что в нем найдутся две такие диагонали, что круги, построенные
на них как на диаметрах, полностью покроют весь пятиугольник.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 71]
Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками.
Докажите, что среди них можно выбрать несколько попарно
непересекающихся отрезков, сумма длин которых не меньше 0,5.
Любую конечную систему точек плоскости можно покрыть несколькими непересекающимися кругами, сумма диаметров которых меньше количества точек и расстояние между любыми двумя из которых Расстояние между двумя кругами — это расстояние между их ближайшими точками.
На отрезке длиной 1 расположено несколько отрезков, полностью
его покрывающих. Докажите, что можно выбросить некоторые из них
так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их
длин не превосходила 2.
Дан выпуклый пятиугольник, все углы которого тупые. Докажите,
что в нем найдутся две такие диагонали, что круги, построенные
на них как на диаметрах, полностью покроют весь пятиугольник.
Прожектор освещает угол величиной
90o. Докажите, что в
любых четырех заданных точках можно разместить 4 прожектора так,
что они осветят всю плоскость.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 71]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке