ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Пусть
Во вписанном четырёхугольнике ABCD прямая Симсона точки A относительно
треугольника BCD перпендикулярна прямой Эйлера треугольника BCD. Докажите,
что прямая Симсона точки B относительно треугольника ACD перпендикулярна
прямой Эйлера треугольника ACD.
Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда. В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции. Целые ненулевые числа a1, a2, ..., an таковы, что равенство a) Докажите, что число n чётно. б) При каком наименьшем n такие числа существуют?
Постройте треугольник по высоте, опущенной на одну из сторон, и медианам, проведённым к двум другим сторонам.
Трёхчлен ax² + bx + c при всех целых x является точным квадратом. Доказать, что тогда ax² + bx + c = (dx + e)².
Найдите геометрическое место точек X, лежащих внутри трапеции
ABCD (
BC || AD) или на её сторонах, если известно, что
S
Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
Даны треугольник ABC и прямая l, проходящая через центр O вписанной
окружности. Обозначим через A1 (соответственно B1, C1) основание
перпендикуляра, опущенного на прямую l из точки A (соответственно B,
C), а через A2 (соответственно B2, C2) обозначим точку вписанной
окружности, диаметрально противоположную точке касания со стороной BC
(соответственно CA, AB). Докажите, что прямые A1A2, B1B2, C1C2,
пересекаются в одной точке, и эта точка лежит на вписанной окружности.
Углы треугольника равны α, β и γ, а периметр равен P. Найдите стороны треугольника. а) Докажите, что все окружности и прямые задаются уравнениями вида
Az
где A и D — вещественные числа, а c — комплексное число. Наоборот,
докажите, что любое уравнение такого вида задает либо окружность, либо прямую,
либо точку, либо пустое множество.
б) Докажите, что при инверсии окружности и прямые переходят в окружности и прямые. Докажите, что многочлен вида x200y200 + 1 нельзя представить в виде произведения многочленов от одного только x и одного только y. Найдите геометрическое место точек, сумма расстояний от которых до двух данных прямых имеет данную величину. В призму ABCA'B'C' вписана сфера, касающаяся боковых граней BCC'B', CAA'C, ABB'A' в точках A0, B0, C0 соответственно. При этом По неподвижной окружности, касаясь ее изнутри,
катится без скольжения окружность вдвое меньшего радиуса.
Какую траекторию описывает фиксированная точка K подвижной окружности?
Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что AO = BO. Многочлен степени $n > 1$ имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$ Секущая пересекает первую окружность в точках $A_1, B_1$, а вторую – в точках $A_2, B_2$. Вторая секущая пересекает первую окружность в точках $C_1, D_1$, а вторую – в точках $C_2, D_2$. Докажите, что точки $A_1C_1\cap B_2D_2$, $A_1C_1\cap A_2C_2$, $A_2C_2\cap B_1D_1$, $B_2D_2\cap B_1D_1$ лежат на одной окружности, соосной с данными двумя. На биссектрисе AA1 треугольника ABC выбрана точка X. Прямая BX пересекает сторону AC в точке B1, а прямая CX пересекает сторону AB в точке C1. Отрезки A1B1 и CC1 пересекаются в точке P, а отрезки A1C1 и BB1 пересекаются в точке Q. Докажите, что углы PAC и QAB равны. С помощью циркуля и линейки проведите через вершину треугольника прямую, делящую периметр треугольника пополам.
Доказать, что если На плоскости нарисованы два выпуклых многоугольника P и Q. Для каждой стороны многоугольника P многоугольник Q можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через h расстояние между этими прямыми, а через l – длину стороны и вычислим произведение lh. Просуммировав такие произведения по всем сторонам P, получим некоторую величину (P, Q). Докажите, что (P, Q) = (Q, P). |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 133]
Внутри квадрата
A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8.
Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что из этих девяти точек можно выбрать 5 точек, расположенных в вершинах выпуклого пятиугольника.
На плоскости дано несколько правильных n-угольников. Докажите,
что выпуклая оболочка их вершин имеет не менее n углов.
Среди всех таких чисел n, что любой выпуклый
100-угольник можно представить в виде пересечения (т. е.
общей части) n треугольников, найдите наименьшее.
Назовем выпуклый семиугольник особым, если три
его диагонали пересекаются в одной точке. Докажите, что,
слегка пошевелив одну из вершин особого семиугольника,
можно получить неособый семиугольник.
На плоскости нарисованы два выпуклых многоугольника P и Q. Для каждой стороны многоугольника P многоугольник Q можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через h расстояние между этими прямыми, а через l – длину стороны и вычислим произведение lh. Просуммировав такие произведения по всем сторонам P, получим некоторую величину (P, Q). Докажите, что (P, Q) = (Q, P).
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке