ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1275]      



Задача 56576

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

На хорде AB окружности S с центром O взята точка C. Описанная окружность треугольника AOC пересекает окружность S в точке D.
Докажите, что  BC = CD.

Прислать комментарий     Решение

Задача 65821

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношения площадей (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

Прислать комментарий     Решение

Задача 78156

Темы:   [ Угол между касательной и хордой ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3+
Классы: 9,10

Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что  OCMN.

Прислать комментарий     Решение

Задача 102250

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В трапеции CDEA основание CA = 15, основание DE = 9, DA = 13. На описанной около трапеции CDEA окружности взята отличная от A точка B так, что DB = 13. Найдите длину отрезка CB и площадь пятиугольника ABCDE.
Прислать комментарий     Решение


Задача 108068

Темы:   [ Вписанный угол равен половине центрального ]
[ Медиана, проведенная к гипотенузе ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Известно, что вершины квадрата T принадлежат прямым, содержащим стороны квадрата P, а вписанная окружность квадрата T совпадает с описанной окружностью квадрата P. Найдите углы восьмиугольника, образованного вершинами квадрата P и точками касания окружности со сторонами квадрата T, и величины дуг, на которые вершины восьмиугольника делят окружность.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .