Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Дан выпуклый n-угольник, никакие две стороны которого не параллельны. Докажите, что различных треугольников, о которых идет речь в задаче 22.8, не менее n - 2.

Вниз   Решение


Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы.

ВверхВниз   Решение


Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке. Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой.

ВверхВниз   Решение


Пусть x, y, z – положительные числа и  xyz(x + y + z) = 1.  Найдите наименьшее значение выражения  (x + y)(x + z).

ВверхВниз   Решение


В треугольник ABC вписана окружность, которая касается стороны AB в точке D, а стороны AC — в точке E. Найдите площадь треугольника ADE, если известно, что AD = 6, EC = 2, а угол BCA равен 60o.

ВверхВниз   Решение


Периметр параллелограмма равен 90, а острый угол равен 60$deg;. Диагональ параллелограмма делит его тупой угол на части в отношении  1 : 3.  Найдите стороны параллелограмма.

ВверхВниз   Решение


Найдите сумму углов, которые произвольная прямая образует с плоскостью и прямой, перпендикулярной этой плоскости.

ВверхВниз   Решение


В связном графе степени всех вершин чётны. Докажите, что на рёбрах этого графа можно расставить стрелки так, чтобы выполнялись следующие условия:
  а) двигаясь по стрелкам, можно добраться от каждой вершины до любой другой;
  б) для каждой вершины числа входящих и выходящих рёбер равны.

ВверхВниз   Решение


Выпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник описанный?

ВверхВниз   Решение


Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).

ВверхВниз   Решение


Треугольник ABC  (AB > BC)  вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что  AM = CN.  Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.

ВверхВниз   Решение


Точка O, лежащая внутри выпуклого многоугольника, образует с каждыми двумя его вершинами равнобедренный треугольник. Докажите, что точка O равноудалена от вершин этого многоугольника.

ВверхВниз   Решение


Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?

ВверхВниз   Решение


Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.

ВверхВниз   Решение


В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

ВверхВниз   Решение


В параллелограмме $ABCD$ точки $E$ и $F$ выбираются на сторонах $BC$ и $AD$ соответственно так, что $EF=ED=DC$. Пусть $M$ – середина $BE$, а $MD$ пересекает $EF$ в точке $G$. Докажите, что углы $EAC$ и $GBD$ равны.

ВверхВниз   Решение


Докажите, что если две стороны и угол против меньшей из них одного треугольника соответственно равны двум сторонам и углу против меньшей из них другого треугольника, то треугольники могут быть как равными, так и не равными.

ВверхВниз   Решение


Петя покрасил 100 натуральных чисел в красный цвет и 100 других натуральных чисел — в синий. Вася выписал на доску 200 выражений: для каждого красного числа $n$ записал $\frac{x^n}{1-x}$, а для каждого синего числа $m$ записал $\frac{x^m}{1-x^{-1}}.$ После этого мальчики сложили все записанные выражения, привели подобные и упростили выражение. Докажите, что у них получился многочлен от $x$.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 63]      



Задача 66616

Тема:   [ Многочлены (прочее) ]
Сложность: 5
Классы: 9,10,11

Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.
Прислать комментарий     Решение


Задача 61538

Темы:   [ Задачи-шутки ]
[ Многочлены (прочее) ]
Сложность: 2+
Классы: 7,8,9,10,11

Найдите коэффициент при x у многочлена  (x – a)(x – b)(x – c)...(x – z).

Прислать комментарий     Решение

Задача 61014

Темы:   [ Рациональные и иррациональные числа ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10

Выведите из теоремы 61013 то, что   – иррациональное число.

Прислать комментарий     Решение

Задача 61433

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 9,10,11

Докажите, что если Q(x) – многочлен степени  m + 1,  то  P(x) = ΔQ(x)  – многочлен степени m.

Прислать комментарий     Решение

Задача 66609

Темы:   [ Дроби (прочее) ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 63]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .