Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

В треугольнике ABC, площадь которого равна 1, на медиане BK взята точка M, причём  MK = ¼ BK.  Прямая AM пересекает сторону BC в точке L.
Найдите площадь треугольника ALC.

Вниз   Решение


Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o .

ВверхВниз   Решение


Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

ВверхВниз   Решение


Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.

ВверхВниз   Решение


Через точку M, лежащую внутри параллелограмма ABCD, проведены прямые PR и QS, параллельные сторонам BC и AB (точки P, Q, R и S лежат на сторонах AB, BC, CD и DA соответственно). Докажите, что прямые BS, PD и MC пересекаются в одной точке.

ВверхВниз   Решение


Автор: Уткин А.

В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.

ВверхВниз   Решение


Доказать, что квадрат любого простого числа  p > 3  при делении на 12 даёт в остатке 1.

ВверхВниз   Решение


Доказать, что многочлен с целыми коэффициентами  a0xn + a1xn–1 + ... + an–1x + an,  принимающий при  x = 0  и  x = 1  нечётные значения, не имеет целых корней.

ВверхВниз   Решение


Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.

ВверхВниз   Решение


Решить уравнение:

| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.

ВверхВниз   Решение


Решить в натуральных числах уравнение  x2y–1 + (x + 1)2y–1 = (x + 2)2y–1.

ВверхВниз   Решение


У первоклассника имеется сто карточек, на которых написаны натуральные числа от 1 до 100, а также большой запас знаков "+" и "=". Какое наибольшее число верных равенств он может составить? (Каждая карточка используется не более одного раза, в каждом равенстве может быть только один знак "=", переворачивать карточки и прикладывать их для получения новых чисел нельзя.)

ВверхВниз   Решение


На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что  $AK = AC,  BK = LC$.  Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1757]      



Задача 97766

Тема:   [ Уравнения в целых числах ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найти все целые решения уравнения  yk = x² + x  (k – натуральное число, большее 1).

Прислать комментарий     Решение

Задача 97795

Темы:   [ Средние величины ]
[ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 8,9

Пешеход шёл 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км.
Следует ли из этого, что его средняя скорость за всё время равна 5 км/час?

Прислать комментарий     Решение

Задача 97893

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана делит площадь пополам ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Доказательство от противного ]
Сложность: 2
Классы: 8,9,10

Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.

Прислать комментарий     Решение

Задача 97929

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 2
Классы: 7,8,9

Автор: Назаров Ф.

Автомат при опускании гривенника выбрасывает пять двушек, а при опускании двушки – пять гривенников.
Может ли Петя, подойдя к автомату с одной двушкой, получить после нескольких опусканий одинаковое количество двушек и гривенников?

Прислать комментарий     Решение

Задача 97977

Темы:   [ Задачи на смеси и концентрации ]
[ Обыкновенные дроби ]
Сложность: 2
Классы: 6,7,8

Автор: Фольклор

Известно, что доля блондинов среди голубоглазых больше чем доля блондинов среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1757]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .