Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 1957]
|
|
Сложность: 3 Классы: 10,11
|
Найдите углы выпуклого четырёхугольника
ABCD, в котором
BAC = 30
o,
ACD = 40
o,
ADB = 50
o,
CBD = 60
o и
ABC +
ADC = 180
o.
Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?
|
|
Сложность: 3 Классы: 8,9,10
|
Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.
Дана последовательность an = 1 + 2n + ... + 5n. Существуют ли пять идущих подряд её членов, кратных 2005?
|
|
Сложность: 3 Классы: 7,8,9
|
Сравнив дроби 111110/111111, 222221/222223, 333331/333334, расположите их в порядке возрастания.
Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 1957]