Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 25 задач
Версия для печати
Убрать все задачи

а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии?
б) А если бы аборигены хотели получить сумму в 910 рупий 50 монетами по 10, 34 и 62 рупии?

Вниз   Решение


Петя и Витя ехали вниз по эскалатору. Посередине эскалатора хулиган Витя сорвал с Пети шапку и бросил её на встречный эскалатор. Пострадавший Петя побежал обратно вверх по эскалатору, чтобы затем спуститься вниз и вернуть шапку. Хитрый Витя побежал по эскалатору вниз, чтобы затем подняться вверх и успеть раньше Пети. Кто успеет раньше, если скорости ребят относительно эскалатора постоянны и не зависят от направления движения?

ВверхВниз   Решение


Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N?

ВверхВниз   Решение


Фигура на рисунке составлена из квадратов. Найдите сторону левого нижнего, если сторона самого маленького равна 1.

ВверхВниз   Решение


В трапеции ABCD стороны AD и BC параллельны, и  AB = BC = BD.  Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.

ВверхВниз   Решение


Расставьте скобки так, чтобы получилось верное равенство:

1 - 2 . 3 + 4 + 5 . 6 . 7 + 8 . 9 = 1995.

ВверхВниз   Решение



Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.

ВверхВниз   Решение


В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

ВверхВниз   Решение


Разрежьте фигуру (по границам клеток) на три равные (одинаковые по форме и величине) части.

ВверхВниз   Решение


В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?

ВверхВниз   Решение


На прямой через равные промежутки поставили десять точек, и они заняли отрезок длины a. На другой прямой через такие же промежутки поставили 100 точек, и они заняли отрезок длины b. Во сколько раз b больше a?

ВверхВниз   Решение


Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE:  ∠A = ∠C = 90°,  AB = AEBC = CDAC = 1.  Найдите площадь пятиугольника.

ВверхВниз   Решение


К натуральному числу A приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до A . Найдите A .

ВверхВниз   Решение


Отец с двумя сыновьями отправились навестить бабушку, которая живёт в 33 км от города. У отца есть мотороллер, скорость которого 25 км/ч, а с пассажиром – 20 км/ч (двух пассажиров на мотороллере перевозить нельзя). Каждый из братьев идёт по дороге со скоростью 5 км/ч. Докажите, что все трое могут добраться до бабушки за 3 часа.

ВверхВниз   Решение


a) Придумайте три правильные несократимые дроби, сумма которых – целое число, а если каждую из этих дробей "перевернуть" (то есть заменить на обратную), то сумма полученных дробей тоже будет целым числом.
б) То же, но числители дробей – не равные друг другу натуральные числа.

ВверхВниз   Решение


Автор: Фольклор

Верно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного?

ВверхВниз   Решение


Кузнечик прыгает вдоль прямой вперёд на 80 см или назад на 50 см. Может ли он менее чем за 7 прыжков удалиться от начальной точки ровно на 1 м 70 см?

ВверхВниз   Решение


Дан равносторонний треугольник ABC и прямая l, проходящая через его центр. Точки пересечения этой прямой со сторонами AB и BC отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника ABC.

ВверхВниз   Решение


Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

ВверхВниз   Решение


Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты?

ВверхВниз   Решение


В корзине лежат 30 грибов – рыжиков и груздей. Известно, что среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов – хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?

ВверхВниз   Решение


В треугольнике ABC точка I – центр вписанной окружности, точки IA, IC – центры вневписанных окружностей, касающихся сторон BC и AB соответственно. Точка O – центр описанной окружности треугольника IIAIC. Докажите, что  OIAC.

ВверхВниз   Решение


Внутри окружности с центром O отмечены точки A и B так, что  OA = OB.
Постройте на окружности точку M, для которой сумма расстояний до точек A и B наименьшая среди всех возможных.

ВверхВниз   Решение


На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 109958  (#98.4.8.1)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10

Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N?

Прислать комментарий     Решение

Задача 108107  (#98.4.8.2)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?

Прислать комментарий     Решение

Задача 109960  (#98.4.8.3)

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8

В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
Прислать комментарий     Решение


Задача 109961  (#98.4.8.4)

Темы:   [ Системы точек ]
[ Четыре точки, лежащие на одной окружности ]
[ Взаимное расположение двух окружностей ]
Сложность: 3+
Классы: 7,8,9

На плоскости дано множество из n9 точек. Для любых 9 его точек можно выбрать две окружности так, что все эти точки окажутся на выбранных окружностях. Докажите, что все n точек лежат на двух окружностях.
Прислать комментарий     Решение


Задача 109962  (#98.4.8.5)

Темы:   [ Числовые таблицы и их свойства ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9


Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .