ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В квадрате клетчатой бумаги 10×10 нужно расставить один корабль
1×4, два – 1×3, три – 1×2 и четыре – 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут
прилегать к границам квадрата. Докажите, что Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8? Решите уравнение: |x - 2005| + |2005 - x| = 2006. Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей? Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. Пусть a, b, c – такие целые неотрицательные числа, что 28a + 30b + 31c = 365. Докажите, что a + b + c = 12. Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью? У двузначного числа первая цифра вдвое больше второй. Если к этому числу прибавить квадрат его первой цифры, то получится квадрат некоторого целого числа. Найдите исходное двузначное число. В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны? На окружной железной дороге n станций. Иногда дежурные по станциям связываются друг с другом по радио. В каждый момент времени сеанс связи ведут только два человека. За сутки между каждыми двумя станциями произошёл ровно один радиосеанс. Для каждой станции (если учесть только её сеансы) оказалось, что она общалась с другими станциями по очереди в порядке их расположения на железной дороге (по или против часовой стрелки, у разных станций эти направления могут быть разными), начиная с одной из соседних и заканчивая другой. Чему может равняться n? Составьте квадрат, используя ровно четыре из пяти изображенных ниже фигур. Каждую из четырех выбранных Вами фигур можно использовать только один раз. Остап Бендер и Киса Воробьянинов разделили между собой выручку от продажи слонов населению. Остап подумал: если бы я взял денег на 40% больше, то доля Кисы уменьшилась бы на 60%. А как изменилась бы доля Воробьянинова, если бы Остап взял себе денег на 50% больше? Цифры трёхзначного числа A записали в обратном порядке и получили число B. Может ли число, равное сумме A и B, записываться только нечётными цифрами?
Даны три вектора Три прямоугольных треугольника расположены в одной полуплоскости относительно данной прямой l так, что один из катетов каждого треугольника лежит на этой прямой. Известно, что существует прямая, параллельная l, пересекающая треугольники по равным отрезкам. Докажите, что если расположить треугольники в одной полуплоскости относительно прямой l так, чтобы другие их катеты лежали на прямой l, то также найдётся прямая, параллельная l , пересекающая их по равным отрезкам. Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй. Найдите расстояние между противоположными ребрами правильного тетраэдра с ребром a . Прямая a , не лежащая в плоскости α , параллельна некоторой прямой этой плоскости. Докажите, что прямая a параллельна плоскости α . Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям: l || BC, l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом. Найдите угол между гранями правильного тетраэдра. Найдите радиус сферы, описанной около правильного тетраэдра с ребром a . Докажите, что через любую из двух скрещивающихся прямых можно провести плоскость, параллельную другой прямой, и притом только одну. По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]
Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.
Двое по очереди выписывают на доску натуральные числа от 1 до 1000. Первым ходом первый игрок выписывает на доску число 1. Затем очередным ходом на доску можно выписать либо число 2a , либо число a+1 , если на доске уже написано число a . При этом запрещается выписывать числа, которые уже написаны на доске. Выигрывает тот, кто выпишет на доску число 1000. Кто выигрывает при правильной игре?
Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).
В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке