Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 1957]
|
|
Сложность: 2+ Классы: 6,7,8
|
Можно ли поставить на плоскости 100 точек (сначала первую, потом
вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной
прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек,
имела ось симметрии?
|
|
Сложность: 2+ Классы: 5,6,7,8
|
Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров?
|
|
Сложность: 2+ Классы: 6,7,8
|
В олимпиаде участвовали 2006 школьников. Оказалось, что школьник Вася из всех шести задач решил только одну, а число участников, решивших
хотя бы 1 задачу, в 4 раза больше, чем решивших хотя бы 2;
хотя бы 2 задачи, в 4 раза больше, чем решивших хотя бы 3;
хотя бы 3 задачи, в 4 раза больше, чем решивших хотя бы 4;
хотя бы 4 задачи, в 4 раза больше, чем решивших хотя бы 5;
хотя бы 5 задач, в 4 раза больше, чем решивших все 6.
Сколько школьников не решили ни одной задачи?
|
|
Сложность: 2+ Классы: 7,8,9
|
Кооператив получает яблочный и виноградный сок в одинаковых бидонах и выпускает яблочно-виноградный напиток в одинаковых банках. Одного бидона яблочного сока хватает ровно на 6 банок напитка, а одного бидона виноградного – ровно на 10. Когда рецептуру напитка изменили, одного бидона яблочного сока стало хватать ровно на 5 банок напитка. На сколько банок напитка хватит теперь одного бидона виноградного сока? (Напиток водой не разбавляется.)
|
|
Сложность: 2+ Классы: 6,7,8
|
КУБ является кубом. Докажите, что ШАР кубом не
является. (КУБ и ШАР трёхзначные числа, разные буквы обозначают
различные цифры.)
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 1957]