ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри треугольника ABC взята такая точка O, что ∠ABO = ∠CAO, ∠BAO = ∠BCO, ∠BOC = 90°. Найдите отношение AC : OC. Решение |
Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1957]
Внутри треугольника ABC взята такая точка O, что ∠ABO = ∠CAO, ∠BAO = ∠BCO, ∠BOC = 90°. Найдите отношение AC : OC.
Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Сумма цифр натурального числа n равна 100. Может ли сумма цифр числа n³ равняться 1000000?
На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?
Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1957] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|