|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На боковом ребре пирамиды взяты две точки, делящие ребро на три равные части. Через них проведены плоскости, параллельные основанию. Найдите объём части пирамиды, заключённой между этими плоскостями, если объём всей пирамиды равен 1. Через точку P, лежащую на общей хорде AB двух пересекающихся окружностей, проведены хорда KM первой окружности и хорда LN второй окружности. Докажите, что четырехугольник KLMN вписанный. Середины диагоналей AC, BD, CE,... выпуклого шестиугольника ABCDEF образуют выпуклый шестиугольник. Докажите, что его площадь в четыре раза меньше площади исходного шестиугольника. Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна? Может ли конечный набор точек содержать для каждой своей точки ровно 100 точек, удаленных от нее на расстояние 1? Дан параллелограмм ABCD. Вневписанная окружность треугольника ABD касается продолжений сторон AD и AB в точках M и N. Докажите, что точки пересечения отрезка MN с BC и CD лежат на вписанной окружности треугольника BCD. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 86]
Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 86] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|