|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Точка O – центр описанной окружности остроугольного треугольника ABC. Прямая, перпендикулярная стороне AC, пересекает сторону BC и прямую AB в точках Q и P соответственно. Докажите, что точки B, O и середины отрезков AP и CQ лежат на одной окружности. |
Страница: << 201 202 203 204 205 206 207 >> [Всего задач: 1984]
Точка O – центр описанной окружности остроугольного треугольника ABC. Прямая, перпендикулярная стороне AC, пересекает сторону BC и прямую AB в точках Q и P соответственно. Докажите, что точки B, O и середины отрезков AP и CQ лежат на одной окружности.
Внутри выпуклого четырехугольника A1A2B2B1 нашлась такая точка C, что треугольники CA1A2 и CB2B1 – правильные. Точки C1 и C2 симметричны точке C относительно прямых A2B2 и A1B1 соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.
Уравнение с целыми коэффициентами x4 + ax³ + bx² + cx + d = 0 имеет четыре положительных корня с учетом кратности.
Имеются чашечные весы, которые находятся в равновесии, если разность масс на их чашах не превосходит 1 г, а также гири массами ln 3, ln 4, ..., ln 79 г.
Все натуральные числа, бóльшие единицы, раскрасили в два цвета – синий и красный – так, что сумма каждых двух синих (в том числе одинаковых) – синяя, а произведение каждых двух красных (в том числе одинаковых) – красное. Известно, что при раскрашивании были использованы оба цвета и что число 1024 покрасили в синий цвет. Какого цвета при этом могло оказаться число 2017?
Страница: << 201 202 203 204 205 206 207 >> [Всего задач: 1984] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|