Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.

Вниз   Решение


В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны   и  .  Найдите гипотенузу треугольника.

ВверхВниз   Решение


На плоскости даны три точки A, B, C и три угла $ \angle$D, $ \angle$E, $ \angle$F, меньшие 180o и в сумме равные 360o. Построить с помощью линейки и транспортира точку O плоскости такую, что $ \angle$AOB = $ \angle$D, $ \angle$BOC = $ \angle$E, $ \angle$COA = $ \angle$F (с помощью транспортира можно измерять и откладывать углы).

ВверхВниз   Решение


Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.

ВверхВниз   Решение


Имеются две концентрические окружности. Вокруг меньшей из них описан многоугольник, целиком находящийся внутри большей окружности. Из общего центра на стороны многоугольника опущены перпендикуляры, которые продолжены до пересечения с большей окружностью; каждая из полученных точек пересечения соединена с концами соответствующей стороны многоугольника. При каком условии построенный так звёздчатый многоугольник будет развёрткой пирамиды?

ВверхВниз   Решение


Среди 4-х людей нет трех с одинаковым именем, одинаковым отчеством или одинаковой фамилией, но у любых двух людей совпадают либо имя, либо отчество, либо фамилия. Может ли так быть?

ВверхВниз   Решение


Одна из сторон треугольника равна 6, вторая сторона равна 2$ \sqrt{7}$, а противолежащий ей угол равен 60o. Найдите третью сторону треугольника.

ВверхВниз   Решение


Пусть O — центр окружности, описанной около треугольника ABC , AOC = 60o . Найдите угол AMC , где M — центр окружности, вписанной в треугольник ABC .

ВверхВниз   Решение


Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км?

ВверхВниз   Решение


CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .

ВверхВниз   Решение


Имеется 81 гиря весом 12 г, 22 г, 32 г, ..., 812 г. Разложить их на 3 равные по весу кучи.

ВверхВниз   Решение


Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

ВверхВниз   Решение


На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?

ВверхВниз   Решение


Отрезки AB и CD пересекаются под прямым углом и  AC = AD.  Докажите, что  BC = BD  и  ∠ACB = ∠ADB.

ВверхВниз   Решение


На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD отметили точки E, F, G, H соответственно.
Докажите, что описанные круги треугольников HAE, EBF, FCG и GDH покрывают четырёхугольник ABCD целиком.

ВверхВниз   Решение


Стороны треугольника равны 10, 17, и 21. Найдите высоту, проведённую к большей стороне.

ВверхВниз   Решение


Пусть  z = x + iy,  w = u + iv.  Найдите
  а)  z + w;   б)  zw;   в)  z/w.

ВверхВниз   Решение


Том написал на заборе из досок слово ММО, а Гек — число 2020. Ширина каждой буквы и цифры 9 см, а ширина доски забора — 5 см. Мог ли Гек испачкать меньше досок, чем Том? (Доски расположены вертикально, а слова и числа пишутся горизонтально. Цифры и буквы пишутся через равные промежутки.)

ВверхВниз   Решение


Существует ли число, в десятичной записи квадрата которого имеется последовательность цифр «2018»?

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1957]      



Задача 66473

Темы:   [ Площадь (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Площадь треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Даны четыре палочки. Оказалось, что из любых трёх из них можно сложить треугольник, при этом площади всех четырех треугольников равны. Обязательно ли все палочки одинаковой длины?
Прислать комментарий     Решение


Задача 66478

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существует ли число, в десятичной записи квадрата которого имеется последовательность цифр «2018»?
Прислать комментарий     Решение


Задача 66479

Темы:   [ Геометрия на клетчатой бумаге ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В клетчатом квадрате со стороной 2018 часть клеток покрашены в белый цвет, остальные — в чёрный. Известно, что из этого квадрата можно вырезать квадрат $10\times 10$, все клетки которого белые, и квадрат $10\times 10$, все клетки которого чёрные. При каком наименьшем $d$ можно гарантировать, что из него можно вырезать квадрат $10\times 10$, в котором количество чёрных и белых клеток отличается не больше чем на $d$?
Прислать комментарий     Решение


Задача 66480

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$.
Прислать комментарий     Решение


Задача 66484

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .