ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Окружность с центром I лежит внутри окружности с центром O. Найдите геометрическое место центров описанных окружностей треугольников IAB, где AB – хорда большей окружности, касающаяся меньшей. Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ. В турнире по футболу участвует 2n команд (n > 1). В каждом туре команды разбиваются на n пар и команды в каждой паре играют между собой. Так провели 2n – 1 тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии. На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что ∠AOP = ∠COQ = ∠ABC. Паук сплёл паутину, и во все её 12 узелков попалось по мухе или комару. При этом каждое насекомое оказалось соединено отрезком паутины ровно с двумя комарами. Нарисуйте пример, как это могло быть (написав внутри узелков буквы М и К). Даны точки A, B. Найдите геометрическое место таких точек C, что C, середины отрезков AC, BC и точка пересечения медиан треугольника ABC лежат на одной окружности. В равнобедренном треугольнике ABC (AC=BC) O – центр описанной окружности, H – ортоцентр, P – такая точка внутри треугольника, что ∠APH=∠BPO=π/2. Докажите, что ∠PAC=∠PBA=∠PCB. Дан остроугольный треугольник ABC. Его покрывают тремя кругами, центры которых лежат в вершинах, а радиусы равны высотам, проведённым из этих вершин. Доказать, что каждая точка треугольника покрыта хотя бы одним из кругов. На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников. Внутри прямого угла с вершиной O расположен треугольник OAB с прямым углом A. Высота треугольника OAB, опущенная на гипотенузу, продолжена за точку A до пересечения со стороной угла O в точке M. Расстояния от точек M и B до второй стороны угла O равны 2 и 1 соответственно. Найдите OA. Доказать, что число 100...001, в котором 21974 + 21000 – 1 нулей, составное. Из прямоугольника 3×6 вырезали одну клетку (см. рис.). «Пришейте» эту клетку в другом месте так, чтобы получилась фигура, которую можно разрезать на две одинаковых. Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что ∠ABM = ∠CBN. Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что AC' = A'C. Таня сфотографировала четырёх котиков, поедающих сосиски (рис. 1). Вскоре она сделала ещё один кадр (рис. 2). Каждый котик ест свои сосиски непрерывно и с постоянной скоростью, а на чужие не покушается. Кто доест первым и кто последним? Ответ объясните. У Кати и Маши расчёски одинаковой длины. У каждой расчёски все зубчики одинаковые, а расстояния между зубчиками равны ширине зубчика. В Катиной расчёске 11 зубчиков (см. рис.). Сколько зубчиков в Машиной расчёске, если они в пять раз уже зубчиков Катиной расчёски? Четырехугольник ABCD описан вокруг окружности радиуса R. Пусть h1 и h2 – высоты опущенные из точки A на стороны BC и CD соответственно. Аналогично h3 и h4 – высоты опущенные из точки C на стороны AB и AD. Докажите, что h1+h2−2Rh1h2=h3+h4−2Rh3h4. |
Страница: 1 2 >> [Всего задач: 8]
Внутри прямого угла с вершиной O расположен треугольник OAB с прямым углом A. Высота треугольника OAB, опущенная на гипотенузу, продолжена за точку A до пересечения со стороной угла O в точке M. Расстояния от точек M и B до второй стороны угла O равны 2 и 1 соответственно. Найдите OA.
Пусть точка P лежит на описанной окружности треугольника ABC. Точка A1 симметрична ортоцентру треугольника PBC относительно серединного перпендикуляра к BC. Точки B1 и C1 определяются аналогично. Докажите, что точки A1, B1 и C1 лежат на одной прямой.
Четырехугольник ABCD, вписанный в окружность ω, таков что AD=BD=AC. Точка P движется по ω. Прямые AP и DP пересекают прямые CD и AB в точках E и F соответственно. Прямые BE и CF пересекаются в точке Q. Найдите геометрическое место точек Q.
Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в 10 км от берега, и понимает, что расстояние от корабля до маяка не превышает 10 км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше 75 км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)
Четырехугольник ABCD описан вокруг окружности радиуса R. Пусть h1 и h2 – высоты опущенные из точки A на стороны BC и CD соответственно. Аналогично h3 и h4 – высоты опущенные из точки C на стороны AB и AD. Докажите, что h1+h2−2Rh1h2=h3+h4−2Rh3h4.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке