ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Про натуральные числа x, y и z известно, что НОД(x,y,z)=1 и x2+y2+z2=2(xy+yz+zx). Докажите, что x, y и z – квадраты натуральных чисел. В треугольнике ABC на стороне BC отмечена точка K. В треугольники ABK и ACK вписаны окружности, первая касается стороны BC в точке M, вторая – в точке N. Докажите, что BM·CN > KM·KN. Трапеция ABCD вписана в окружность. Её основание AB в 3 раза больше основания CD. Касательные к описанной окружности в точках A и C пересекаются в точке K. Докажите, что угол KDA прямой. Фома и Ерёма делят кучку из 25 монет в 1, 2, 3, ..., 25 алтынов. На каждом ходу один из них выбирает монету из кучки, а другой говорит, кому её отдать. Первый раз выбирает Фома, далее тот, у кого сейчас больше алтынов, при равенстве – тот же, кто в прошлый раз. Может ли Фома действовать так, чтобы в итоге обязательно получить больше алтынов, чем Ерёма, или Ерёма всегда сможет Фоме помешать? Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки. Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB Может ли наименьшее общее кратное целых чисел 1, 2, ..., n быть в 2008 раз больше, чем наименьшее общее кратное целых чисел 1, 2, ..., m? Существует ли непостоянный многочлен P(x), который можно представить в виде суммы a(x)+b(x), где a(x) и b(x) – квадраты многочленов с действительными коэффициентами, Алёша задумал натуральные числа a,b,c, а потом решил найти такие натуральные x,y,z, что a = НОК(x,y),b = НОК(x,z),c = НОК(y,z). Оказалось, что такие x,y,z существуют и определены однозначно. Алёша рассказал об этом Боре и сообщил ему только числа a и b. Докажите, что Боря может восстановить c. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 52]
Существует ли непостоянный многочлен P(x), который можно представить в виде суммы a(x)+b(x), где a(x) и b(x) – квадраты многочленов с действительными коэффициентами,
Три богатыря бьются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает Змею половину всех голов и ещё одну, Добрыня Никитич – треть всех голов и ещё две, Алёша Попович – четверть всех голов и ещё три. Богатыри бьют по одному в каком хотят порядке, отрубая каждым ударом целое число голов. Если ни один богатырь не может ударить (число голов получается нецелым), Змей съедает всех троих. Смогут ли богатыри отрубить все головы 41!-головому Змею?
Существует ли вписанный в окружность N-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если
Трапеция ABCD вписана в окружность. Её основание AB в 3 раза больше основания CD. Касательные к описанной окружности в точках A и C пересекаются в точке K. Докажите, что угол KDA прямой.
Алёша задумал натуральные числа a,b,c, а потом решил найти такие натуральные x,y,z, что a = НОК(x,y),b = НОК(x,z),c = НОК(y,z). Оказалось, что такие x,y,z существуют и определены однозначно. Алёша рассказал об этом Боре и сообщил ему только числа a и b. Докажите, что Боря может восстановить c.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке