Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц?

Вниз   Решение


В остроугольном треугольнике $ABC$ высоты $AH$ и $CH$ пересекают стороны $BC$ и $AB$ в точках $A_1$ и $C_1$. Точки $A_2$ и $C_2$ симметричны относительно $AC$ точкам $A_1$ и $C_1$. Докажите, что расстояние между центрами описанных окружностей треугольников $C_2HA_1$ и $C_1HA_2$ равно $AC$.

ВверхВниз   Решение


Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми?

ВверхВниз   Решение


Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

ВверхВниз   Решение


Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?

ВверхВниз   Решение


Докажите, что числа Ферма  fn = 22n + 1  при  n > 1  не представимы в виде суммы двух простых чисел.

ВверхВниз   Решение


Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что

$\displaystyle {\frac{1}{z-C_1}}$ + $\displaystyle {\frac{1}{z-C_2}}$ + ... + $\displaystyle {\frac{1}{z-C_n}}$ = 0,

то точка плоскости, соответствующая z, лежит внутри этого n-угольника.

ВверхВниз   Решение


Докажите для положительных значений переменных неравенство  (a + b + c)(a² + b² + c²) ≥ 9abc.

ВверхВниз   Решение


n отрезков длины 1 пересекаются в одной точке. Доказать, что хотя бы одна сторона 2n-угольника, образованного их концами, не меньше стороны правильного 2n-угольника, вписанного в окружность диаметра 1.

ВверхВниз   Решение


Дан треугольник ABC. Построим треугольник, стороны которого касаются вневписанных окружностей этого треугольника. Зная углы исходного треугольника, найти углы построенного.

ВверхВниз   Решение


Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:

a2(a1 - a2 + a3) < 0
a3(a2 - a3 + a4) < 0
.........    
a11(a10 - a11 + a12) < 0

Доказать, что среди этих чисел найдётся по крайней мере 3 положительных и 3 отрицательных.

ВверхВниз   Решение


Пусть  {pn} – последовательность простых чисел  (p1 = 2,  p2 = 3,  p3 = 5, ...).
  а) Докажите, что  pn > 2n  при  n ≥ 5.
  б) При каких n будет выполняться неравенство  pn > 3n?

ВверхВниз   Решение


В выпуклом пятиугольнике $ABCDE$ равны углы $CAB$, $BCA$, $ECD$, $DEC$ и $AEC$. Докажите, что середина $BD$ лежит на $CE$.

ВверхВниз   Решение


Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз.

ВверхВниз   Решение


Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.

ВверхВниз   Решение


a, b, c ≥ 0.  Докажите, что  (a + b)(a + c)(b + c) ≥ 8abc.

ВверхВниз   Решение


Автор: Дидин М.

Дан остроугольный треугольник $ABC$. Точка $P$ выбрана так, что $AP=AB$ и $PB \parallel AC$. Точка $Q$ выбрана так, что $AQ=AC$ и $CQ \parallel AB$. Отрезки $CP$ и $BQ$ пересекаются в точке $X$. Докажите, что центр описанной окружности треугольника $ABC$ лежит на окружности $(PXQ)$.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



Задача 66962  (#8.2)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3
Классы: 8,9,10

Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66963  (#8.3)

Темы:   [ ГМТ (прочее) ]
[ Задачи на движение ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10

Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки $S$. Таракан $A$ бежит вдвое медленнее, чем $B$, и втрое медленнее, чем $C$. Точки $X$, $Y$ на отрезке $SC$ таковы, что $SX=XY=YC$. Прямые $AX$ и $BY$ пересекаются в точке $Z$. Найдите ГМТ пересечения медиан треугольника $ZAB$.
Прислать комментарий     Решение


Задача 66964  (#8.4)

Темы:   [ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Вписанные и описанные окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9,10

В остроугольном треугольнике $ABC$ высоты $AH$ и $CH$ пересекают стороны $BC$ и $AB$ в точках $A_1$ и $C_1$. Точки $A_2$ и $C_2$ симметричны относительно $AC$ точкам $A_1$ и $C_1$. Докажите, что расстояние между центрами описанных окружностей треугольников $C_2HA_1$ и $C_1HA_2$ равно $AC$.
Прислать комментарий     Решение


Задача 66966  (#8.5)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10

Автор: Saghafian M.

Пусть $A_1$, $A_2$, $A_3$, $A_4$ и $B_1$, $B_2$, $B_3$, $B_4$ – две четверки точек, не лежащих на одной окружности. Известно, что для любых $i$, $j$, $k$ радиусы описанных окружностей треугольников $A_iA_jA_k$ и $B_iB_jB_k$ равны. Обязательно ли $A_iA_j=B_iB_j$ для любых $i$, $j$?
Прислать комментарий     Решение


Задача 66965  (#8.6)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9,10

Автор: Дидин М.

Дан остроугольный треугольник $ABC$. Точка $P$ выбрана так, что $AP=AB$ и $PB \parallel AC$. Точка $Q$ выбрана так, что $AQ=AC$ и $CQ \parallel AB$. Отрезки $CP$ и $BQ$ пересекаются в точке $X$. Докажите, что центр описанной окружности треугольника $ABC$ лежит на окружности $(PXQ)$.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .