Страница:
<< 192 193 194 195
196 197 198 >> [Всего задач: 1984]
|
|
|
Сложность: 4- Классы: 7,8,9
|
Коля и Витя играют в следующую игру. На столе лежит куча из 31 камня. Мальчики
делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую
кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто
после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля
сделать так, чтобы выиграть при любой игре Вити?
|
|
|
Сложность: 4- Классы: 9,10,11
|
На сферическом Солнце обнаружено конечное число круглых пятен, каждое из
которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются
замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой.
Доказать, что на Солнце найдутся две диаметрально противоположные точки, не
покрытые пятнами.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Дано число
x, большее 1. Обязательно ли имеет место равенство
[
![$\displaystyle \sqrt{[\sqrt{x}]}$](show_document.php?id=1067730)
] = [

]?
Какое наименьшее количество точек на плоскости надо взять, чтобы среди
попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?
В центре квадрата сидит заяц, а в каждом из четырёх углов по одному волку.
Может ли заяц выбежать из квадрата, если волки могут бегать только по
сторонам квадрата с максимальной скоростью в 1,4 раза большей, чем
максимальная скорость зайца?
Страница:
<< 192 193 194 195
196 197 198 >> [Всего задач: 1984]