ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 2399]
В основании A1A2...An
пирамиды SA1A2...An лежит точка O, причём SA1 = SA2 = ... = SAn и ∠SA1O = ∠SA2O = ... = ∠SAnO.
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки,
лежащие на соседних гранях, соединили отрезком.
Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 2399]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке