Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что AKB'+ BKA'= ALB'+ BLA'=180o . Докажите, что прямая KL равноудалена от точек A' , B' , C' .

Вниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 1 : 2, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.

ВверхВниз   Решение


Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

ВверхВниз   Решение


В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

ВверхВниз   Решение


Точки E и F – середины сторон AB и AD параллелограмма ABCD, а отрезки CE и BF пересекаются в точке K. Точка M лежит на отрезке EC, причём  BM || KD.  Докажите, что площади треугольника KFD и трапеции KBMD равны.

ВверхВниз   Решение


Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

ВверхВниз   Решение


На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что  

ВверхВниз   Решение


Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

ВверхВниз   Решение


В розетку электросети подключены приборы, общее сопротивление которых составляет R=80  Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите (в омах) наименьшее возможное сопротивление Ry  этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями Rx  и Ry  их общее сопротивление даётся формулой R= , а для нормального функционирования электросети, общее сопротивление в ней должно быть не меньше 30 Ом.

ВверхВниз   Решение


На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.

ВверхВниз   Решение


Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен  (ax + b)1000 – (cx + d)1000  после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.

ВверхВниз   Решение


Дан треугольник ABC и линейка, на которой отмечены два отрезка, равные AC и BC . Пользуясь только этой линейкой, найдите центр вписанной окружности треугольника, образованного средними линиями ABC .

ВверхВниз   Решение


Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]      



Задача 109505

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Общие четырехугольники ]
[ Углы между биссектрисами ]
[ Векторы помогают решить задачу ]
[ Вспомогательная окружность ]
[ Средняя линия треугольника ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол равен половине центрального ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 5-
Классы: 8,9,10

В четырёхугольнике ABCD стороны AB, BC и CD равны, M – середина стороны AD. Известно, что  ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 65379

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Средняя линия треугольника ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 5
Классы: 10,11

Автор: Яковлев И.

В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1, CC1 и отмечены точки A2, B2, C2, в которых вневписанные окружности касаются сторон BC, CA, AB соответственно. Прямая B1C1 касается вписанной окружности треугольника. Докажите, что точка A1 лежит на описанной окружности треугольника A2B2C2.

Прислать комментарий     Решение

Задача 105205

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 109841

Темы:   [ Биссектриса делит дугу пополам ]
[ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Средняя линия треугольника ]
[ Вспомогательные равные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4
Классы: 9,10,11

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 66188

Темы:   [ Признаки и свойства касательной ]
[ Поворот (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10,11

Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'.

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .