ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 112]      



Задача 98444

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

Прислать комментарий     Решение

Задача 101876

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Высота прямоугольного треугольника, опущенная на его гипотенузу, делит биссектрису острого угла в отношении  4 : 3,  считая от вершины.
Найдите величину этого угла.

Прислать комментарий     Решение

Задача 108075

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?

Прислать комментарий     Решение

Задача 115885

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вневписанные окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9,10,11

Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Прислать комментарий     Решение

Задача 116501

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9,10

Внутри треугольника ABC на биссектрисе его угла B выбрана такая точка M, что  AM = AC  и  ∠BCM = 30°.  Докажите, что  ∠AMB = 150°.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .