ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что  

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 460]      



Задача 55093

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4-
Классы: 8,9

Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону KL, если  KQ = 12,  NQ = 8,  а площадь четырёхугольника KLMN равна площади треугольника LQM.

Прислать комментарий     Решение

Задача 55095

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4-
Классы: 8,9

Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону MN, если  KQ = 6,  NQ = 4,  а площади треугольника LQM и четырёхугольника KLMN равны.

Прислать комментарий     Решение

Задача 65015

Темы:   [ Четырехугольники (прочее) ]
[ Отношение площадей треугольников с общим углом ]
[ Признаки подобия ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10

На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Докажите, что  SABCD ≥ 3SBCM.

Прислать комментарий     Решение

Задача 65232

Темы:   [ Трапеции (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 10,11

O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что  SAOK = SAOB + SDOK.

Прислать комментарий     Решение

Задача 108623

Темы:   [ Неравенства с площадями ]
[ Отношение площадей треугольников с общим углом ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10

На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что  

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .