Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.

Вниз   Решение


Пусть a и n – натуральные числа, большие 1. Докажите, что если число  an + 1  простое, то a чётно и  n = 2k.
(Числа вида  fk = 22k + 1  называются числами Ферма.)

ВверхВниз   Решение


Докажите неравенство для натуральных  n > 1:  

ВверхВниз   Решение


Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов.

ВверхВниз   Решение


Обязательно ли треугольник равнобедренный, если центр его вписанной окружности одинаково удален от середин двух сторон?

ВверхВниз   Решение


На концах клетчатой полоски 1 × 20 стоит по шашке. За ход разрешается сдвинуть любую шашку в направлении другой на одну или на две клетки. Перепрыгивать шашкой через шашку нельзя. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми?

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


а) Двое по очереди ставят слонов в клетки шахматной доски. Очередным ходом надо побить хотя бы одну небитую клетку. Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не может сделать ход.

б) Та же игра, но с ладьями.

ВверхВниз   Решение


Докажите, что числа Ферма  fn = 22n + 1  при  n > 1  не представимы в виде суммы двух простых чисел.

ВверхВниз   Решение


В каждой клетке доски 11 × 11 стоит шашка. За ход разрешается снять с доски любое количество подряд идущих шашек либо из одного вертикального, либо из одного горизонтального ряда. Выигрывает снявший последнюю шашку.

ВверхВниз   Решение


Автор: Фомин С.В.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений), а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?

ВверхВниз   Решение


Докажите неравенство  2m+n–2mn,  где m и n – натуральные числа.

ВверхВниз   Решение


Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n .

Вверх   Решение

Задачи

Страница: << 168 169 170 171 172 173 174 >> [Всего задач: 2400]      



Задача 109084

Темы:   [ Свойства сечений ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Дан параллелепипед ABCDA1B1C1D1 . На рёбрах AD , A1D1 и B1C1 взяты точки M , L и K соответственно, причём B1K = A1L , AM = A1L . Известно, что KL = 2 . Найдите длину отрезка, по которому плоскость KLM пересекает параллелограмм ABCD .
Прислать комментарий     Решение


Задача 109091

Темы:   [ Параллельность прямых и плоскостей ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 8,9

Можно ли расположить в пространстве четыре попарно перпендикулярные прямые?
Прислать комментарий     Решение


Задача 109093

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 8,9

Точки A и B лежат в плоскости α , M – такая точка в пространстве, для которой AM = 2 , BM = 5 и ортогональная проекция на плоскость α отрезка BM в три раза больше ортогональной проекции на эту плоскость отрезка AM . Найдите расстояние от точки M до плоскости α .
Прислать комментарий     Решение


Задача 109096

Темы:   [ Cерединный перпендикуляр и ГМТ ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

Докажите, что геометрическое место точек, равноудаленных от двух заданных точек пространства, есть плоскость, перпендикулярная отрезку с концами в этих точках и проходящая через середину этого отрезка.
Прислать комментарий     Решение


Задача 109098

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n .
Прислать комментарий     Решение


Страница: << 168 169 170 171 172 173 174 >> [Всего задач: 2400]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .