ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На длинной скамейке сидели мальчик и девочка. Затем по одному пришли ещё 20 детей, и каждый садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. В итоге оказалось, что мальчики и девочки на скамейке чередуются. Можно ли наверняка сказать, сколько отважных среди детей на скамейке? Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный. Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол боковой грани с плоскостью основания пирамиды. На отрезке [0, 1] отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны. а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно. Вписанная окружность треугольника ABC касается сторон AB и AC в точках P и Q соответственно. Пусть RS – средняя линия треугольника, параллельная AB, T – точка пересечения прямых PQ и RS. Докажите, что T лежит на биссектрисе угла B треугольника. В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика? Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них. На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если AB = 12 и BE : EC = 4 : 5. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях. У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина. На сторонах $AB,BC,CA$ треугольника $ABC$ выбраны точки $C_1,A_1,B_1$ так, что отрезки $AA_1,BB_1,CC_1$ пересекаются в одной точке. Лучи $B_1A_1$ и $B_1C1$ пересекают описанную окружность в точках $A_2$ и $C_2$. Докажите, что точки $A,C,$ точка пересечения $A_2C_2$ с $BB_1$ и середина $A_2C_2$ лежат на одной окружности. В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ. В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой. Дан правильный треугольник ABC. На продолжении стороны AC за точку C взята точка D, а на продолжении стороны BC за точку C – точка E, причём Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку. Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми?
Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.
Плоский угол при вершине правильной четырёхугольной пирамиды равен ϕ . Найдите угол между соседними боковыми гранями пирамиды. Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A. Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8? На плоскости даны прямая $l$ и точка $A$ вне ее. Найдите геометрическое место инцентров остроугольных треугольников с вершиной $A$, у которых одна сторона лежит на прямой $l$. Доказать, что остаток от деления простого числа на 30 – простое число или единица.
Окружность проходит через вершины A и B треугольника ABC и касается прямой
AC в точке A. Найдите радиус окружности, если
Приведённый квадратный трёхчлен f(x) имеет два различных корня. Может ли так оказаться, что уравнение f(f(x)) = 0 имеет три различных корня, а уравнение f(f(f(x))) = 0 – семь различных корней? |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1224]
Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.
Приведённый квадратный трёхчлен f(x) имеет два различных корня. Может ли так оказаться, что уравнение f(f(x)) = 0 имеет три различных корня, а уравнение f(f(f(x))) = 0 – семь различных корней?
Мальвина дала Буратино задание: "Сосчитай кляксы в своей тетрадке, прибавь к их числу 7, раздели на 8, умножь на 6 и отними 9. Если сделаешь всё правильно, получишь простое число". Буратино всё перепутал. Кляксы он подсчитал точно, но потом умножил их количество на 7, вычел из результата 8, затем разделил на 6 и прибавил 9. Какой ответ получился у Буратино?
По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.
На краю круглого вращающегося стола через равные промежутки стояли 30 чашек с чаем. Мартовский Заяц и Соня сели за стол и стали пить чай из каких-то двух чашек (не обязательно соседних). Когда они допили чай, Заяц повернул стол так, что перед каждым опять оказалось по полной чашке. Когда и эти чашки опустели, Заяц снова повернул стол (возможно на другой угол), и снова перед каждым оказалась полная чашка. И так продолжалось до тех пор, пока весь чай не был выпит. Докажите, что если бы Заяц всегда поворачивал стол так, чтобы его новая чашка стояла через одну от предыдущей, то им бы тоже удалось выпить весь чай (то сеть тоже каждый раз обе чашки оказывались бы полными).
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1224]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке