Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

На длинной скамейке сидели мальчик и девочка. Затем по одному пришли ещё 20 детей, и каждый садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. В итоге оказалось, что мальчики и девочки на скамейке чередуются. Можно ли наверняка сказать, сколько отважных среди детей на скамейке?

Вниз   Решение


Построить такой равнобедренный треугольник, чтобы периметр всякого вписанного в него прямоугольника (две вершины которого лежат на основании треугольника) был постоянный.

ВверхВниз   Решение


Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол боковой грани с плоскостью основания пирамиды.

ВверхВниз   Решение


На отрезке  [0, 1]  отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.

ВверхВниз   Решение


а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
б) Верно ли это для замкнутых ломаных, нарисованных на поверхности оконной рамы?

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AB и AC в точках P и Q соответственно. Пусть RS – средняя линия треугольника, параллельная AB, T – точка пересечения прямых PQ и RS. Докажите, что T лежит на биссектрисе угла B треугольника.

ВверхВниз   Решение


Автор: Садыков Р.

В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?

ВверхВниз   Решение


Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.

ВверхВниз   Решение


На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если  AB = 12  и  BE : EC = 4 : 5.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

ВверхВниз   Решение


У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берёт себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Докажите, что все овцы собрались у одного крестьянина.

ВверхВниз   Решение


На сторонах $AB,BC,CA$ треугольника $ABC$ выбраны точки $C_1,A_1,B_1$ так, что отрезки $AA_1,BB_1,CC_1$ пересекаются в одной точке. Лучи $B_1A_1$ и $B_1C1$ пересекают описанную окружность в точках $A_2$ и $C_2$. Докажите, что точки $A,C,$ точка пересечения $A_2C_2$ с $BB_1$ и середина $A_2C_2$ лежат на одной окружности.

ВверхВниз   Решение


В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ.

ВверхВниз   Решение


В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

ВверхВниз   Решение


Дан правильный треугольник ABC. На продолжении стороны AC за точку C взята точка D, а на продолжении стороны BC за точку C – точка E, причём
BD = DE.  Докажите, что  AD = CE.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.

ВверхВниз   Решение


Даны числа 1, 2, ..., N, каждое из которых окрашено либо в чёрный, либо в белый цвет. Разрешается перекрашивать в противоположный цвет любые три числа, одно из которых равно полусумме двух других. При каких N всегда можно сделать все числа белыми?

ВверхВниз   Решение


Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.

ВверхВниз   Решение


Плоский угол при вершине правильной четырёхугольной пирамиды равен ϕ . Найдите угол между соседними боковыми гранями пирамиды.

ВверхВниз   Решение


Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.

ВверхВниз   Решение


Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?

ВверхВниз   Решение


На плоскости даны прямая $l$ и точка $A$ вне ее. Найдите геометрическое место инцентров остроугольных треугольников с вершиной $A$, у которых одна сторона лежит на прямой $l$.

ВверхВниз   Решение


Доказать, что остаток от деления простого числа на 30 – простое число или единица.

ВверхВниз   Решение


Окружность проходит через вершины A и B треугольника ABC и касается прямой AC в точке A. Найдите радиус окружности, если $ \angle$BAC = $ \alpha$, $ \angle$ABC = $ \beta$ и площадь треугольника ABC равна S.

ВверхВниз   Решение


Приведённый квадратный трёхчлен  f(x) имеет два различных корня. Может ли так оказаться, что уравнение  f(f(x)) = 0  имеет три различных корня, а уравнение  f(f(f(x))) = 0  – семь различных корней?

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1224]      



Задача 110020

Темы:   [ Разбиения на пары и группы; биекции ]
[ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.

Прислать комментарий     Решение

Задача 110056

Темы:   [ Итерации ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 3+
Классы: 9,10,11

Приведённый квадратный трёхчлен  f(x) имеет два различных корня. Может ли так оказаться, что уравнение  f(f(x)) = 0  имеет три различных корня, а уравнение  f(f(f(x))) = 0  – семь различных корней?

Прислать комментарий     Решение

Задача 111638

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 6,7,8,9

Мальвина дала Буратино задание: "Сосчитай кляксы в своей тетрадке, прибавь к их числу 7, раздели на 8, умножь на 6 и отними 9. Если сделаешь всё правильно, получишь простое число". Буратино всё перепутал. Кляксы он подсчитал точно, но потом умножил их количество на 7, вычел из результата 8, затем разделил на 6 и прибавил 9. Какой ответ получился у Буратино?

Прислать комментарий     Решение

Задача 111807

Тема:   [ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9,10

По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.
Прислать комментарий     Решение


Задача 115378

Темы:   [ Процессы и операции ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 6,7,8

На краю круглого вращающегося стола через равные промежутки стояли 30 чашек с чаем. Мартовский Заяц и Соня сели за стол и стали пить чай из каких-то двух чашек (не обязательно соседних). Когда они допили чай, Заяц повернул стол так, что перед каждым опять оказалось по полной чашке. Когда и эти чашки опустели, Заяц снова повернул стол (возможно на другой угол), и снова перед каждым оказалась полная чашка. И так продолжалось до тех пор, пока весь чай не был выпит. Докажите, что если бы Заяц всегда поворачивал стол так, чтобы его новая чашка стояла через одну от предыдущей, то им бы тоже удалось выпить весь чай (то сеть тоже каждый раз обе чашки оказывались бы полными).

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .